Elastic Wave Sensing Using Fiber Bragg Grating-Based Sensors and Dynamic Interrogators

Balaji Srinivasan, A.V. Harish, K. Srijith, Krishnan Balasubramaniam


Elastic Wave Sensing is a potent tool for Structural Health Monitoring (SHM) applications. In this paper, we review the use of fiber Bragg gratings (FBGs) as a viable alternative to conventional piezo electric transducers. In particular, we present Fabry-Perot filters based on fiber Bragg gratings (FP-FBG) as a possible configuration for enhanced sensitivity elastic wave sensing. Finally we discuss the directional response of FBG-based sensors, and their role in the unique identification of different Lamb modes based on their dispersion characteristics.

Full Text:



Chang PC, Flatau A, Liu SC. Review Paper: Health Monitoring of Civil Infrastructure. Struct Heal Monit. 2003;

(3):257–267. doi:10.1177/1475921703036169.

Udd E. Structural Health Monitoring Using FBGs for Aerospace and Composite Manufacturing. Opt Fiber Sensors.

: MF2. doi:10.1364/OFS.2006.MF2.

Zheng S, Naik G, Chen Z, Zhu Y, Krishnaswamy S. Sensing

platforms for structural health monitoring. Lynch JP, Yun C-B, Wang K-W, eds. Sensors Smart Struct Technol Civil, Mech Aerosp Syst 2013, Proc SPIE. 2013; 8692.


Gyuhae Park HHC and DJI. Impedance-based health

monitoring of civil structural components. J Infrastruct

Syst. 2000; 6(December):153–160.

Park S, Ahmad S, Yun C-B, Roh Y. Multiple Crack Detection

of Concrete Structures Using Impedance-based Structural

Health Monitoring Techniques. Exp Mech. 2006;

(5):609–618. doi:10.1007/s11340-006-8734-0.

Peter Carden EP, Fanning P. Vibration Based Condition

Monitoring: A Review. Struct Heal Monit. 2004; 3(4):355–


Tan AC, Kaphle M, Thambiratnam D. Structural health

monitoring of bridges using acoustic emission technology.

8th Int Conf Reliab Maintainab Saf. 2009: 839–


Wevers M, Lambrighs K. Applications of acoustic emission

for SHM: A review. In: Encyclopedia of Structural

Health Monitoring; 2009.

Yuyama S, Yokoyama K, Niitani K, Ohtsu M, Uomoto T.

Detection and evaluation of failures in high-strength tendon

of prestressed concrete bridges by acoustic emission.

Constr Build Mater. 2007; 21(3):491–500. doi:10.1016/j.


Lundgaard LE. Acoustic Partial Discharge Detection—

Fundamental Considerations. IEEE Electr Insul Mag. 1992;


Lundgaard LE. Partial discharge. XIV. Acoustic partial discharge detection-practical application. IEEE Electr Insul

Mag. 1992; 8. doi:10.1109/57.156943.

Kundu P, Kishore NK, Sinha AK. Simulation and Analysis

of Acoustic Wave Propagation due to Partial Discharge

Activity. Transformer oil. 2006:607–610.

Yamada K, Morita A, Ohtsuka S, Hikita M, Nakamura I,

Koide H. Fundamental study on Partial Discharge Induced

Acoustic Wave Propagation in Simulated Transformer

Composite Insulation System. 2009: 477–480.

Zargari A, Blackbum TR. Acoustic detection of partial discharges using non-intrusive optical fibre sensors. IEEE Int

Conf Conduct Break Solid Dielectr. 1998: 573–576.

Lima SEU, Member S, Frazão O, et al. Mandrel-Based

Fiber-Optic Sensors for Acoustic Detection of Partial

Discharges—a Proof of Concept. 2010; 25(4):2526–2534.

Posada-roman J, Garcia-souto JA, Rubio-serrano J. Fiber

Optic Sensor for Acoustic Detection of Partial Discharges

in Oil-Paper Insulated Electrical Systems. Sensors 2012.

: 4793–4802. doi:10.3390/s120404793.

Staszewski WJ, Mahzan S, Traynor R. Health monitoring

of aerospace composite structures—Active and passive

approach. Compos Sci Technol. 2009; 69(11–12):1678–


Sun Z, Rocha B, Wu K-T, Mrad NA. Methodological

Review of Piezoelectric Based Acoustic Wave Generation

and Detection Techniques for Structural Health Monitoring. Int J Aerosp Eng. 2013; 2013:1–22.


Raghavan A, Cesnik CES. Review of Guided-wave Structural Health Monitoring. Shock Vib Dig. 2007; 39(2):91–


Benes E, Gröschl M, Burger W, Schmid M. Sensors based

on piezoelectric resonators. Sensors Actuators A Phys.

; 48(1):1–21. doi:10.1016/0924-4247(95)00846-2.

Bai J. Structural health monitoring of smart civil structures

based on fiber Bragg grating sensing technology.

2nd Int Conf Artif Intell Manag Sci Electron Commer.

; (3):635–638. doi:10.1109/AIMSEC.2011.6010269.

Betz DC, Thursby G, Culshaw B, Staszewski WJ. Acousto-

ultrasonic sensing using fiber Bragg gratings. Smart Mater Struct. 2003; 12(1):122–128. doi:10.1088/0964-


Tosi D, Olivero M, Perrone G, Vallan A, Arcudi L. Simple

fiber Bragg grating sensing systems for structural health

monitoring. 2009 IEEE Work Environ Energy, Struct Monit

Syst. 2009: 80–86. doi:10.1109/EESMS.2009.5341310.

Li H-N, Li D-S, Song G-B. Recent applications of fiber

optic sensors to health monitoring in civil engineering.

Eng Struct. 2004; 26(11):1647–1657. doi:10.1016/j.


Betz DC, Thursby G, Culshaw B, Staszewski WJ. Identification of structural damage using multifunctional Bragg

grating sensors: I. Theory and implementation. Smart

Mater. Struct. 2006; 15(5):1305–1312. doi:10.1088/0964-


Othonos, A. and K. Kalli, Fiber Bragg Gratings-Fundamentals and Applications, Artech House, Boston, 1999.

Cheng J, Feng J, Zhao L, Fang S, Wei X, Zou X. An airborne acoustic fiber sensor using fiber Bragg grating.

; 15:030001–030001. doi:10.1121/1.4764495.

Xiong W, Cai CS, Kong X. Instrumentation design for

bridge scour monitoring using fiber Bragg grating sensors.

Appl. Opt. 2012; 51(5):547–57. Available at: http://


Han M, Liu T, Hu L, Zhang Q. Intensity-demodulated fiber-

ring laser sensor system for acoustic emission detection.

; 21(24):29269–29276. doi:10.1364/OE.21.029269.

Fisher NE, Webb DJ, Pannell CN, et al. Ultrasonic hydrophone based on short in-fiber bragg gratings. Appl. Opt.

; 37(34):8120–8. Available at: http://www.ncbi.nlm.


Lissak B, Arie A, Tur M. Highly sensitive dynamic strain

measurements by locking lasers to fiber Bragg gratings.

Opt. Lett. 1998; 23(24):1930–2. Available at: http://www.


Müller MS, Hoffmann L, Bodendorfer T, et al. Fiber-

Optic Sensor Interrogation Based on a Widely Tunable

Monolithic Laser Diode. IEEE Trans. Instrum. Meas. 2010;


Niewczas P, Willshire AJ, Dziuda L, McDonald JR. Performance Analysis of the Fiber Bragg Grating Interrogation

System Based on an Arrayed Waveguide Grating. IEEE

Trans. Instrum. Meas. 2004; 53(4):1192–1196. doi:10.1109/


Robertson D, Niewczas P, McDonald JR. Interrogation

of a Dual-Fiber-Bragg-Grating Sensor Using an Arrayed

Waveguide Grating. IEEE Trans. Instrum. Meas. 2007;

(6):2641–2645. doi:10.1109/TIM.2007.908156.

Bucaro JA, Dardy HD, Carome EF. Fiber Optic Hydrophone.

J. Acoust. Soc. Am. 1977; 62(5):1302–1304.

Hocker GB. Fiber-optic sensing of pressure and temperature. Appl. Opt. 1979; 18(9):1445–8. Available at: http:// www.ncbi.nlm.nih.gov/pubmed/20212866.

Liu K, Measures RM. Detection of high-frequency elastic

waves with embedded ordinary single-mode fibers. In:

DePaula RP, Udd E, eds. SPIE Fiber Optic and Laser Sensors IX. International Society for Optics and Photonics; 1991:

–234. doi:10.1117/12.50944.

Knudsen S, Blotekjaer K. An ultrasonic fiber-optic hydrophone incorporating a push-pull transducer in a Sagnac

interferometer. J. Light Technol. 1994; 12(9):1696–1700.


Murphy KA, Claus R., Greene JA, Tran TA. Acoustic Wave

Response of the Extrinsic Fabry-Perot Interferometer

(EFPD Optical Fiber Sensor. Adapt. Struct. Mater. Syst.

; 35:395–399.

Li D, Sui Q, Cao Y. Linearity optimization of edge filter

demodulators in FBGs. Optoelectron Lett. 2008; 4(3):193–


Zhang J, Zhao H. Matched FBG Application Research on

Dynamic Sensing and Demodulation. 2009 Symp. Photonics

Optoelectron. 2009: 1–5. doi:10.1109/SOPO.2009.

Srinivasan B, Varghese B, Achar HV. Enhanced Detection of Vibrations Using Fiber Fabry Perot Filters and Spectral Estimation Techniques. In: Advanced Photonics. Washington,

D.C.: OSA; 2011: JTuB25. doi:10.1364/ANIC.2011.JTuB25.

Fried D, Wolf J, Pokasov V, et al. Adaptive Noise Cancelling: Principles and Applications. 1975; 63(12):105–112.

Ziedler JR, Satorius EH, Chabries DM, Wexler HT, Adaptive

Enhancement of Multiple Sinusiods in Uncorrelated

Noise, IEEE Trans. Acoust., Speech, Signal Processing,

; 26(3):240-254.

Haykin SO. Adaptive Filter Theory (4th Edition) Simon O.

Haykin; 2002.

Harish AV, Bibin V, Krishna Chaitanya GM, et al. Transient

response of Fabry-Perot filter based dynamic interrogator.

Nondestruct. Test Eval. 2012; 10(4):53–58.

Fomitchov P, Krishnaswamy S. Response of a fiber Bragg

grating ultrasonic sensor. Opt Eng. 2003; 42(4):956.


Lamb H. On Waves in an Elastic Plate. In: Proceedings of

the Royal Society of London. Series A.; 1917; 114 –128.

Su Z, Ye L, Lu Y. Guided Lamb waves for identification of

damage in composite structures: A review. J. Sound Vib.

; 295(3–5):753–780. doi:10.1016/j.jsv.2006.01.020.

Fomitchov PA, Krishnaswamy S. Fiber Bragg grating ultrasound sensor for process monitoring and NDE applications.

In: AIP Conference Proceedings. Vol 615. AIP; 2002;

–944. doi:10.1063/1.1472897.

Haiyan Z, Xiulil S, Xueruil Q, Xiao L, Donghuil L. Ultrasonic

Lamb Wave Inspection Using Fiber Bragg Gratings.

In: Microwave Conference, 2008 China Japan Joint; 2008;


Betz DC, Thursby G, Culshaw B, Staszewski WJ. Acoustoultrasonic sensing using fiber Bragg gratings. Smart Mater. Struct. 2003; 12(1):122–128.

Achar HV., Ramakrishnan R, Balasubramanian K, Srinivasan B. Investigation of the Directional Response of Fiber Bragg Grating-Based Acoustic Emission Sensor. In: Imaging and Applied Optics Technical Papers. Washington, D.C.: OSA; 2012: SM4F.5. doi:10.1364/SENSORS.2012.SM4F.5.

Prosser WH, Seale MD, Smith BT. Time-frequency analysis

of the dispersion of Lamb modes. J. Acoust. Soc. Am.

; 105:2669–2676. doi:10.1121/1.426883.

Harish AV, Balasubramaniam K, Srinivasan B. Dispersion-

Based Identification of Lamb Modes Using Fiber Bragg

Gratings. Under Rev. 2014.

Fortunko CM, King RB, Tan M. Nondestructive evaluation

of planar defects in plates using lowfrequency shear

horizontal waves. J. Appl. Phys. 1982; 53(5):3450–3458.

doi:10.1063/1.331163. Balaji


  • There are currently no refbacks.