Pollen analysis of apiary honeys from East Godavari district, AP

C. G. K. RAMANUJAM, P. R. REDDY AND T. P. KALPANA
Palaeobotany-Palynology Laboratory, Department of Botany, P. G. College of Science, Osmania University, Saifabad, Hyderabad 500 004, India.

Received on March 9, 1992; Revised on June 1, 1992.

Abstract
Pollen contents of 13 apiary honeys (5 of winter and 8 of summer) collected during November 1990–May 1991 from Kakinada and its adjoining areas and Diwancheruvu near Rajahmundry in the East Godavari district, AP, were analysed. On the basis of absolute pollen counts the honeys are referable to Groups II to IV.

The study highlights Sapindus emarginatus and Eucalyptus globulus during winter and Borassus flabellifer and Syzygium cumin during summer as the major sources of nectar for the Indian hive bee, Apis cerana, along the coastal belt of East Godavari district.

Key words: Pollen analysis, apiary honeys, East Godavari district.

1. Introduction
Pollen analysis of honey samples provides information on the plants visited by honey bees for nectar collection. Analysis of the pollen loads helps us to evaluate the sources of pollen to the bees. The pollen contents of honeys and pollen loads further reflect upon the local floristic composition and concomitantly their geographical origin and collection period. A critical screening of bee plants supplying nectar and pollen during different seasons and their numerical preponderance is essential to make any meaningful suggestions regarding the suitability of an area for bee-keeping (apiary) industry leading to commercial production of honey.

Melittopalynological studies of honeys of Apis cerana, A. dorsata and A. florea in Andhra Pradesh, notwithstanding their vast potential, have been few and far between to date. Seethalakshmi’s pioneering study1 on two honey samples from Guntur district brought to light Phyla nodiflora, Hygrophila sp., Borassus flabellifer and Justicia sp. as significant nectar suppliers. Jhansi and Ramanujam2-4 analysed honeys from Guntur, East Godavari, Karimnagar, Hyderabad, Visakhapatnam and Nalgonda districts and documented unifloral honeys of Asteracantha sp., Borassus flabellifer, Psidium
guajava, Gardenia sp. and Leea sp. Further studies on honeys and pollen loads highlighted the importance of Mangifera indica, Tridax procumbens, Phoenix sylvestris, Helianthus annuus, Syzygium cumini (in the Hyderabad urban complex); Carum coticum, Guizotia abyssinica, Prosopis juliflora, Ailanthus excelsa, Phoenix sylvestris (in the agricultural tracts of Ranga Reddy district) and Mimosa pudica, Sapindus marginatus, Capsicum frutescens and Prosopis juliflora (in the agricultural tracts of Gun- tur district) as significant bee plants.

Jhansi et al. encountered Cassia fistula, Terminalia alata, Lagerstroemia parviflora, etc., as reliable nectar sources for Apis dorsata bees in the deciduous forests of Prakasam district.

The present study records a critical qualitative and quantitative analysis of the pollen contents of 13 apiary honey samples collected essentially from the coastal belt of the East Godavari district of Andhra Pradesh and brings to light the key bee plants supplying nectar to the honey bees during winter and summer seasons.

2. Materials and methods

Thirteen honey samples from the apiary colonies of Apis cerana var. indica were collected from Kakinada and its adjoining villages and from Diwancheruvu near Rajahmundry in the East Godavari district of Andhra Pradesh during the period November 1990–May 1991. Of these, five samples represent winter honeys collected during Nov. 1990–Jan. 1991 and eight, summer honeys obtained during March–May 1991 (Table I).

<table>
<thead>
<tr>
<th>Honey sample</th>
<th>Locality</th>
<th>Date of collection</th>
<th>Colour</th>
<th>Absolute pollen counts/10g and groupings</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG–KP–1</td>
<td>Kakinada</td>
<td>Nov. 1990</td>
<td>Amber</td>
<td>740,000</td>
</tr>
<tr>
<td>EG–KP–2</td>
<td>Kakinada</td>
<td>Dec. 12, 1990</td>
<td>Pale yellow</td>
<td>200,000</td>
</tr>
<tr>
<td>EG–KP–3</td>
<td>Kakinada</td>
<td>Dec. 24, 1990</td>
<td>Pale yellow</td>
<td>220,000</td>
</tr>
<tr>
<td>EG–KP–4</td>
<td>Kakinada</td>
<td>Dec. 26, 1990</td>
<td>Pale yellow</td>
<td>280,000</td>
</tr>
<tr>
<td>EG–D–5</td>
<td>Diwancheruvu</td>
<td>March, 1991</td>
<td>Yellowish brown</td>
<td>880,000</td>
</tr>
<tr>
<td>EG–D–6</td>
<td>Diwancheruvu</td>
<td>April 18, 1991</td>
<td>Amber</td>
<td>630,000</td>
</tr>
<tr>
<td>EG–KP–7</td>
<td>Kakinada</td>
<td>April, 1991</td>
<td>Yellowish brown</td>
<td>470,000</td>
</tr>
<tr>
<td>EG–S–8</td>
<td>Sarparam</td>
<td>April, 1991</td>
<td>Amber</td>
<td>60,000</td>
</tr>
<tr>
<td>EG–S–9</td>
<td>Sarparam</td>
<td>May 8, 1991</td>
<td>Amber</td>
<td>50,000</td>
</tr>
<tr>
<td>EG–S–10</td>
<td>Sarparam</td>
<td>May 8, 1991</td>
<td>Amber</td>
<td>120,000</td>
</tr>
<tr>
<td>EG–G–12</td>
<td>Gigalpadu</td>
<td>May 8, 1991</td>
<td>Amber</td>
<td>310,000</td>
</tr>
</tbody>
</table>
The technique of Louveaux et al12 was employed in the recovery of pollen contents of the honeys and their slide preparation. Three pollen slides were prepared for each sample and scanned critically for their pollen contents. The pollen types recovered were identified with the help of reference slides and relevant literature. The pollen contents were analysed qualitatively and quantitatively by the method recommended by Louveaux et al (International Commission for Bee Botany)12. Depending upon whether a honey sample was obtained from a single or multiple species, it was designated as uni- or multifloral. Based upon the frequencies of the pollen types, pollen spectra of the honey samples were prepared.

The ratio of honeydew elements (HDE) to total number of pollen grains of melliferous taxa in each sample was obtained by the study of unacetolysed honeys12. The absolute pollen count (APC) of the honey samples was calculated using haemocytometer13, and the honey samples were categorized under various groups in accordance with the grading parameter provided by the International Commission for Bee Botany.

3. Observations

All the five winter honeys were found to be unifloral. Sapindus emarginatus (70.33–85.33 per cent) in four samples and Eucalyptus globulus (79.33 per cent) in one sample constitute the predominant pollen types; these may be designated as soapnut and eucalyptus honeys. The other noteworthy pollen types (up to important minor) include Cocos nucifera, Phoenix sylvestris, Prosopis juliflora, Borassus flabellifer and Ageratum conyzoides. A total of 36 pollen types (34 of melliferous and 2 of non-melliferous taxa) were recorded from the winter honeys. Samples KP–3 and KP–11 showed the maximum (19) and minimum (12) number of pollen types, respectively.

Four of the summer honey samples were found to be unifloral and the rest multifloral. Borassus flabellifer (46–62 per cent) in three samples and Syzygium cumini (78–33 per cent) in one sample represent the predominant pollen types; these may be designated as borassus and jamun honeys. The other noteworthy pollen types (up to important minor) recorded are Citrus sp., Feronia elephantum, Phoenix sylvestris, Guazuma ulmifolia, Anocardium occidentale, Eucalyptus globulus, Capparis grandis, Capsicum frutescens, Sapindus emarginatus, Cocos nucifera, Barringtonia acutangula, Morinda citrifolia and Croton bonplandianum. Forty-seven pollen types (43 of melliferous and 4 of non-melliferous taxa) were recorded from the summer honeys. Samples S–8 and D–5 showed the maximum (24) and minimum (11) number of pollen types, respectively.

Table II provides the details of the frequencies (%) and frequency classes of the pollen types recorded in the winter and summer honeys. Figures 1–5 are the pollen spectra of winter honeys and Figures 6–13 are of summer honeys, respectively. Figures 14–44 are the photomicrographs of some of the significant pollen types encountered in the study.

\textit{Amaranthus/Achyranthes} sp., Poaceae pollen, \textit{Cyperus rotundus} and \textit{Holoptelea integrifolia} represent the pollen of anemophilous and non-melliferous plants recorded
Figs. 1-13. Pollen spectra of honey samples.
Figs. 14-44. Photomicrographs of significant pollen types recorded (all figs × 500)

Table II

Frequency classes* and frequencies (%) of pollen types

<table>
<thead>
<tr>
<th>Honey sample</th>
<th>Pollen types</th>
</tr>
</thead>
</table>

WINTER

EG-KP-1

- **P** — *Eucalyptus globulus* (79.33)
- **S** — Nil
- **I** — *Sapindus emarginatus* (7.33), *Phoenix sylvestris* (3.67)
- **M** — *Borassus flabellifer* (2.67), *Croton bonplandianum*, *Caesalpinia* sp. (each 1.0), *As*, *Ci*, *Borr*, *Co*, *Lo*, *Ju*, *Coc*, *Si* (each < 1.0), **UN** (1.33)
- **NMP** — Poaceae type (0.33); **HDE/IP** = 0.01

EG-KP-2

- **P** — *Sapindus emarginatus* (81.33)
- **S** — Nil
- **I** — *Eucalyptus globulus* (4.67), *Cocos nucifera* (3.67)
- **M** — *Borassus flabellifer* (2.0), *Sapindus* (1.0), **UN** (1.0)
- **NMP** — Poaceae type, *Amaranthus/Achyranthes* sp. (each 0.33); **HDE/IP** = 0.02

EG-KP-3

- **P** — *Sapindus emarginatus* (72.0)
- **S** — Nil
- **I** — *Cocos nucifera* (6.33), *Ageratum conyzoides* (5.33), *Eucalyptus globulus* (5.0), *Prosopis juliflora* (3.0)
- **M** — *Borassus flabellifer* (2.0), *Sapindus* (1.0), **UN** (1.0)
- **NMP** — Poaceae type (0.33); **HDE/IP** = 0.01

EG-KP-4

- **P** — *Sapindus emarginatus* (85.33)
- **S** — Nil
- **I** — *Cocos nucifera* (4.33), *Prosopis juliflora* (3.33), *Eucalyptus globulus* (3.0)
- **M** — *Sr*, *Mo*, *Hi*, *Borr*, *Co*, *Cfs*, *Tr*, *Sp*, *Borr*, Ca (each < 1.0)
- **NMP** — Poaceae type (0.33); **HDE/IP** = 0.01

EG-KP-11

- **P** — *Sapindus emarginatus* (70.33)
- **S** — Nil
- **I** — *Cocos nucifera* (12.67), *Borassus flabellifer* (5.67)
- **M** — *Prosopis juliflora* (2.67), *Citrus* sp., *Eucalyptus globulus* (each 2.0), *Bororina hispida* (1.67), *Casuarina equisetifolia* (1.0), *Com*, *Cr*, *Ag*, *Ph* (each < 1.0), **UN** (0.33)
- **HDE/IP** = 0.01

SUMMER

EG-D-5

- **P** — *Nil*
- **S** — *Borassus flabellifer* (27.33), *Citrus* sp. (25.67)
- **I** — *Feronia elephantum* (13.0), *Phoenix sylvestris* (12.33), *Guazuma ulmifolia* (10.67), *Anacardium occidentale* (7.33)
- **M** — *Urticaceae* (1.33), *Coc*, *Az*, *Sa*, *Li* (each < 1.0), **UN** (0.33)
- **HDE/IP** = 0.01

EG-D-6

- **P** — *Borassus flabellifer* (53.0)
- **S** — *Nil*
- **I** — *Anacardium occidentale* (9.67), *Citrus* sp. (7.33), *Guazuma ulmifolia* (6.67), *Eucalyptus globulus* (6.0), *Phoenix sylvestris* (4.67), *Feronia elephantum* (4.0)
- **M** — *Lannea coromandelica* (2.0), *Schleichera oleosa* (1.67), *Syzygium cumini* (1.33), *Lagerstroemia flos-reginae* (1.0), *Te*, *Sa*, *Az*, *Bo*, *Coc* (each < 1.0), **UN** (0.33)
- **NMP** — Holoptelea integrifolia (1.0); **HDE/IP** = 0.01
<table>
<thead>
<tr>
<th>Sample</th>
<th>Pollen types</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG-KP-7</td>
<td>S: Capparis spinosa (30-45%), Borassus flabellifer (30-47%), Cocos nucifera (30-45%), Euphorbia curvata (1-5%), Hyphaene triboci (1-5%), Maerua decandra (1-5%), Pterylenechus globulifera (1-5%), Pterospermum indicum (1-5%), Ricinus communis (1-5%), Xanthium spinosum (1-5%), Xylopia aethiopica (1-5%).</td>
</tr>
<tr>
<td>EG-S-8</td>
<td>P: Borassus flabellifer (45-55%), Syzygium cumini (30-45%), NMAP: Euphorbia curvata (1-5%), Poaceae type (1-5%), HDEP = 0.01</td>
</tr>
<tr>
<td>EG-S-9</td>
<td>P: Borassus flabellifer (45-55%), Syzygium cumini (30-45%), NMAP: Euphorbia curvata (1-5%), Poaceae type (1-5%), HDEP = 0.01</td>
</tr>
<tr>
<td>EG-S-10</td>
<td>P: Borassus flabellifer (45-55%), Syzygium cumini (30-45%), NMAP: Euphorbia curvata (1-5%), Poaceae type (1-5%), HDEP = 0.01</td>
</tr>
<tr>
<td>EG-G-12</td>
<td>P: Borassus flabellifer (45-55%), Syzygium cumini (30-45%), NMAP: Euphorbia curvata (1-5%), Poaceae type (1-5%), HDEP = 0.01</td>
</tr>
<tr>
<td>EG-G-13</td>
<td>P: Borassus flabellifer (45-55%), Syzygium cumini (30-45%), NMAP: Euphorbia curvata (1-5%), Poaceae type (1-5%), HDEP = 0.01</td>
</tr>
</tbody>
</table>

Notes:
- 300 pollen grains per sample were counted at random for determining the frequency classes (P, S, I, M).
- 150 pollen grains per sample were counted at random for calculating the frequencies (%) of the pollen types.
- P: Predominant pollen types (> 45%); S: Secondary pollen types (16-45%); I: Important minor pollen types (< 3 %); M: Minor pollen types (3-15 %); N: Unknown pollen types; NMP: Pollen type (5-35%); HDEP = 0.01.
Table II (contd)

non-melliferous taxa; HDE/P: Ratio of honeydew elements versus total number of pollen grains of melliferous taxa.

Abbreviations for pollen types constituting less than 1 per cent of the sample.

in minor percentages and their occurrence might be due to contamination of the honeys in the hives by the bees themselves.

The ratio of honeydew elements (represented by fungal spores, viz., Drechslera, Curvularia and Nigrospora, and fungal hyphae) to total number of pollen grains of melliferous taxa ranged from 0.01 to 0.02 and hence referable to the category, 'practically none' (Table II).

The absolute pollen counts (i.e., the number of pollen per 10 grams) of the honey samples ranged from 50,000 (S-9) to 880,000 (D-5) and the honeys are referable to Groups II, III and IV (Table I).

The colour of the honey samples ranged from pale yellow to amber (Table I).

The degree of similarity between a pair of unifloral honeys with the same predominant pollen type can be determined by using the formula $2c/a+b$, where a and b represent the total number of pollen types in the honey samples and c represents the number of pollen types common to both the samples. An index value of more than 0.5 indicates a high degree of similarity between the samples and vice versa. The similarity index values between six possible pairs of soapnut honeys with Sapindus emarginatus as the predominant pollen type, and the three possible pairs of borassus honeys with Borassus flabellifer as the predominant pollen type are given in Table III. The Kakinada samples show high similarity index values ranging from 0.52 to 0.7, with the exception of KP-2 and KP-11 which had a value of 0.47. This could be attributable to the same period of collection (December) and a similar floristic composition. Likewise, although all the borassus honeys were obtained during summer, only the Sarparam samples (S-8 and S-9) showed high index value i.e., 0.59. The low index values between the Sarparam and Diwancheruvu borassus honeys could be due to the relative differences in the composition of local plant communities.
Table III

<table>
<thead>
<tr>
<th></th>
<th>KP-2</th>
<th>KP-3</th>
<th>KP-4</th>
<th>KP-11</th>
<th>D-6</th>
<th>S-8</th>
<th>S-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP-2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-3</td>
<td>0.7</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-4</td>
<td>0.59</td>
<td>0.63</td>
<td>-</td>
<td></td>
<td></td>
<td>0.44</td>
<td>-</td>
</tr>
<tr>
<td>KP-11</td>
<td>0.47</td>
<td>0.52</td>
<td>0.57</td>
<td>-</td>
<td></td>
<td>0.35</td>
<td>0.59</td>
</tr>
</tbody>
</table>

4. Discussion

Among other things, melittopalinological studies facilitate recognition of relative importance of various plants as nectar and/or pollen sources for the honey bees in any particular locality. The present study encompassing qualitative and quantitative pollen analysis of 13 honey samples from the apiaries of Kakinada and its vicinity and Diwancheruvu near Rajahmundry in the East Godavari district has brought to light that *Sapindus emarginatus* and *Eucalyptus globulus* during winter and *Borassus flabellifer*, *Syzgium cumini*, *Cocos nucifera*, *Capparis grandis*, *Citrus* sp. and *Morinda citrifolia* during summer constitute significant sources of nectar for the honey bees of this region. *Borassus flabellifer*, seen locally in profusion, as indicated by the high frequencies of its pollen in summer honeys merits consideration as an important and reliable source of nectar. The recent melittopalinological studies of the apiary honeys of Tenali and Repalle taluks of Guntur district also highlighted *Sapindus emarginatus* and *Borassus flabellifer* as reliable and noteworthy bee plants.

Acknowledgements

The financial help provided by the Council of Scientific and Industrial Research (CSIR), New Delhi (38 (784)/89–EMR II), for carrying out this study is gratefully acknowledged. We are thankful to Shriyuths G. Appa Rao and B. V. Narayana, bee-keepers of Kakinada and Diwancheruvu, for the supply of honey samples.
References

1. SEETHALAKSHMI, T. S.

2. JHANSI, P. AND RANANUIJAM, C. G. K.

3. JHANSI, P. AND RANANUIJAM, G. G. K.

4. JHANSI, P. AND RANANUIJAM, C. G. K.

5. KHALFIA, F. AND RANANUIJAM, C. G. K.

6. KALPANA, T. P. AND RANANUIJAM, C. G. K.

7. KALPANA, T. P. AND RANANUIJAM, C. G. K.
 A melittopalynological investigation of honeys from *Apis florea* and *Apis dorsata* hives, *Biovgyanam*, 1991, 17, 12-23.

8. KALPANA, T. P., KHALFIA, F. AND RANANUIJAM, C. G. K.

9. RANANUIJAM, C. G. K. AND KALPANA, T. P.

10. RANANUIJAM, C. G. K. AND KHALFIA, F.

11. JHANSI, P., KALPANA, T. P. AND RANANUIJAM, C. G. K.

12. LOUVEAUX, J., MAURIZIO, A. AND VORWOHL, G

13. SURYANARAYANA, M. C., SEETHALAKSHMI, T. S. AND PHADKE, R. P.