ON A SERIES OF PRODUCTS OF THREE GEGENBAUER POLYNOMIALS*

BY S. K. LAKSHMANA RAO

(Department of Power Engineering, Civil and Hydraulic Section, Indian Institute of Science, Bangalore-3)

Received August 5, 1955

In a note in the Proceedings of the American Mathematical Society, John P. Vinti has established the following theorem:

THEOREM.—If \(x, y, z \) are real variables and \(P_n \) denotes the Legendre polynomial of order \(n \), then

\[
\sum_{n=0}^{\infty} (n + \frac{1}{2}) P_n(x) P_n(y) P_n(z) = \begin{cases}
\pi^{-1} g^{-\frac{1}{2}} & (g > 0) \\
0 & (g < 0) \\
1 < x, y, z < +1
\end{cases}
\]

where

\[
g = g(x, y, z) = 1 - x^2 - y^2 - z^2 + 2xyz
\]

The object of the present note is to prove a similar relation involving the Gegenbauer (ultraspherical) polynomials.

Let \(x, y, z \) be real variables and \(C_n^\nu \) the Gegenbauer polynomial of order \(n \). We prove

\[
\sum_{n=0}^{\infty} \left(\frac{n!}{\Gamma(n + 2\nu)} \right)^2 (n + \nu) C_n^\nu(x) C_n^\nu(y) C_n^\nu(z) = \begin{cases}
\frac{4^{1-2\nu}}{\pi g^{\nu-1}} & (g > 0) \\
0 & (g < 0) \\
-1 < x, y, z < +1; \nu > 0
\end{cases}
\]

As in [1], if we denote by \(T_+ \) and \(T_- \) the regions as bounded above, i.e., \(-1 < x, y, z < +1\), wherein \(g > 0 \) and \(g < 0 \) respectively, the left-hand side of (3) converges uniformly with respect to \(x \) or \(y \) or \(z \) alone in any closed interval (parallel to the \(x \) or \(y \) or \(z \) axis) interior to \(T_+ \) or \(T_- \).

*After completing the work of this paper, I have learnt that Dr. Brafman (Wayne University Detroit, U.S.A.) has communicated a paper on the topic.
Introduce the function

\[
f(x, y, z) = \begin{cases} \frac{4^{1-2\nu} \pi}{(|\nu|^4)} \frac{g^{\nu-1}}{(1-x^2)(1-y^2)(1-z^2)^{\nu-1}} & (g > 0) \\ 0 & (g \leq 0) \end{cases} \]

\[-1 \leq x, y, z \leq 1 ; \quad \nu > 0 \]

From the expansion

\[
f(x, y, z) = \sum_{n=0}^{\infty} A_n f_n (y, z) C_n^\nu (x) \] (5)

we have after a formal calculation

\[
\int_{-1}^{1} f(x, y, z) (1 - x^2)^{\nu-1} C_n^\nu (x) \, dx = A_n f_n (y, z) \frac{2^{1-2\nu} \pi n!}{(n + \nu) (|\nu|^2)^{\nu}} . \] (6)

As shown in[1], \(g > 0 \) if and only if

\[x_1 = yz - \sqrt{(1-y^2)(1-z^2)} < x < x_2 = yz + \sqrt{(1-y^2)(1-z^2)} , \]

so that the integral on the left-hand side of (6) can be written as

\[
\frac{4^{1-2\nu} \pi}{(|\nu|^4)} \int_{x_1}^{x_2} \frac{g^{\nu-1}}{(1-y^2)(1-z^2)^{\nu-1}} C_n^\nu (x) \, dx . \]

By the substitution

\[x = yz + \sqrt{(1-y^2)(1-z^2)} \cos \phi , \]

the above reduces to

\[
\frac{4^{1-2\nu} \pi}{(|\nu|^4)} \int_{0}^{\pi} C_n^\nu \{ yz + \sqrt{(1-y^2)(1-z^2)} \cos \phi \} (\sin \phi)^{2\nu-1} \, d\phi . \]

Using the addition formula for Gegenbauer polynomials,[2] the expression is seen to be

\[
\frac{2^{1-2\nu} n! \pi}{(|\nu|^2)^{\nu}} C_n^\nu (y) C_n^\nu (z) . \]

From (6) we have then

\[A_n f_n (y, z) - \left(\frac{n!}{n+2\nu} \right)^2 (n + \nu) C_n^\nu (y) C_n^\nu (z) . \] (7)

Comparing (5) and (7), we have

\[
f(x, y, z) = \sum_{n=0}^{\infty} \left(\frac{n!}{n+2\nu} \right)^2 (n + \nu) C_n^\nu (x) C_n^\nu (y) C_n^\nu (z) . \] (8)

It remains to examine the validity of the expansion (5). As \(f(x, y, z) \) is piecewise continuous in \(-1 \leq x, y, z \leq 1\), we observe[3] that if the integrals

\[
l_1 = \int_{-1}^{+1} |f(x, y, z)| \, dx, \quad l_2 = \int_{-1}^{+1} (1 - x^2)^{\nu-1/2} |f(x, y, z)| \, dx \]

b5
exist, the series expansion (5) is valid in the interior of \((- 1, + 1)\) and the convergence is uniform in every closed interval interior to \((- 1, + 1)\). Also the expansion (5) is valid at the end points \(x = \pm 1\) if \(\nu < 0\).

Now we show that both \(I_1\) and \(I_2\) exist if \(\nu > 0\). For

\[
I_1 = \frac{4^{1-2\nu} \pi}{(|\nu|)^4} \left\{ (1 - y^2) (1 - z^2) \right\}^{-(\nu - \frac{1}{2})} \int_{z_1} \left\{ (1 - x^2)^{-\nu/2} g^{\nu-1} \right\} dx,
\]

and with the substitution

\[
x = yz + \sqrt{(1 - y^2) (1 - z^2)} \cos \phi
\]

\[
I_1 = \frac{4^{1-2\nu} \pi}{(|\nu|)^4} \int_0 \left(\sin \phi \right)^{2\nu-1} d\phi.
\]

The last integral exists if \(\nu > 0\).

\[
I_2 = \frac{4^{1-2\nu} \pi}{(|\nu|)^4} \left\{ (1 - y^2) (1 - z^2) \right\}^{-(\nu - \frac{1}{2})} \int_{z_1} (1 - x^2)^{-\nu/2} g^{\nu-1} dx
\]

exists if \(x_1^2, x_2^2 \neq 1\). If \(x_1^2 = x_2^2 = 1\), we have \(y = -z\) or \(y = z\) and in both these cases we can write

\[
I_2 = \frac{4^{1-2\nu} (2\pi)}{(|\nu|)^4} \cdot \frac{|a|^{3\nu/2 - 1}}{2^{\nu/2}} \int_0^{\pi/2} \left(\cos \theta \right)^{\nu-1} (\sin \theta)^{2\nu-1} (2 - a^2 \cos^2 \theta)^{-\nu/2} d\theta
\]

where

\[
0 < a^2 = 2 (1 - y^2) \leq 2.
\]

As

\[
(2 - a^2 \cos^2 \theta)^{-\nu/2} \leq (2 \sin^2 \theta)^{-\nu/2} \text{ for } \nu > 0.
\]

\[
I_2 \leq \frac{4^{1-2\nu} \pi}{(|\nu|)^4} \cdot \frac{a^{3\nu/2 - 1}}{2^{\nu/2}} \cdot 2^{-\nu/2} B \left(\frac{\nu}{2}, \frac{\nu}{2} \right)
\]

which certainly exists for \(\nu > 0\). If \(y^2 = z^2 = 1\), \(I_2\) reduces to 0.

At the end points \(x = \pm 1\), the expansion (5) is not valid as that requires \(\nu < 0\). For the same reason we conclude that (8) is not valid at the points \(y = \pm 1\) and \(z = \pm 1\).

My best thanks are due to Professor N. S. Govinda Rao for kind encouragement.

REFERENCES