Oxidation of indoles

SATYA PRASAD KUNAPULI*, NAYEEM ULLAH KHAN, N. G. DIVAKAR** AND C. S. VAIDYANATHAN***
Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.

Received on November 14, 1981.

Abstract

Chemical, auto and biological oxidations of indole and related compounds are reviewed. In biological oxidation both ring cleaving and ring hydroxylating oxidations are discussed in detail.

Key words: Indoles, oxidation, biological oxidation, autoxidation, metabolism of indoles, degradation of indoles, hydroxylation.

1. Introduction

Indolic compounds have generated enormous interest because of their biological activity. While pure chemists have contributed their mite, particularly with regard to chemical oxidation, only recently biochemists have come to realize the importance of these studies in explaining mechanisms of biological oxidation of indolic compounds. The present review has attempted to review chemical, biological and autoxidation of indoles.

2. Chemical oxidation of indoles

Various oxidizing agents oxidize indole to a variety of products, the degree and extent of oxidation being dependent on the particular reagent and experimental conditions used. Very often in these reactions indoxyl is observed as an intermediate. Indoxyl \( A_1 \) and indigo \( A_2 \) are formed when oxidation is carried out by using hydrogen peroxide

* Present address: Biochemistry Department, University of Texas, Health Science Centre, 7703 Foid Curl Drive, 7, San Antonio, Texas 78284, USA.
** Present address: Indian Institute of Horticultural Research, Hesaraghatta, Bangalore, India.
*** For correspondence.
or perbenzoic acid and a small amount of indirubin $A_4$ is also formed presumably by condensation of indoxyl with isatin $A_5$, another by-product of this oxidation. In contrast to this reaction is the oxidation of indole by sodium perborate, which gives a mixture of indoxyl and leuco indigo $A_4$. On oxidation with alkaline persulfate, indole forms indoxyl-O-sulfate $A_5$. The oxidative cleavage of indole ring to 2-formamido-benzoic acid $A_7$ by manganese dioxide is also known.

![Chart I](image1)

**Chart I**

![Chart II](image2)

**Chart II**

It is important to mention here the cleavage of indole ring by other oxidants like chromium trioxide, potassium permanganate and periodate. Chromium trioxide in acetic acid can effect the cleavage of indoles between C$_2$ and C$_3$. When $A_8$ is oxidized by chromium trioxide $A_{10}$ is the main product while $A_9$ is a by-product. Oxidation of 2-methyl-3-acetyl-6-nitroindole $A_{11}$ yields 6-nitroisatin $A_{12}$ as a by-product. Another reaction which has important commercial application is the preparation of benzo-diazopinone $A_{13}$ by oxidation of indole derivative $A_{14}$ with chromium trioxide in acetic acid. This reaction proceeds via the intermediate formation of ketoamide $A_{15}$ by the oxidative cleavage of indole 2,3-double bond. Recently, Shigeho et al. have reported
the oxidation of an indole derivative \( A_{17} \) with chromium trioxide to an isatin derivative \( A_{18} \).

\[
\begin{align*}
\text{Oxidation of Indoles} & \\
\text{CH}_2\text{NH}_2 & \xrightarrow{\text{CrO}_3} \text{COOH} + \text{NHAc} \\
\end{align*}
\]

There are many reports on the oxidative cleavage of the indole ring by potassium permanganate. When 2-methylindole is oxidized to N-acetylanthranilic acid \( A_{19} \) by potassium permanganate the yield of the reaction is 40\% ; however, when the benzene ring is substituted by methyl groups, the substituents are oxidized to carboxyl groups. The yield of such reactions is below 20\%. This resistance of substituted alkyl group to oxidation has found application in determination of structure of 2-methylindoles substituted with additional methyl groups in the benzene ring. Thus, the dimethylindoles are subjected to oxidation to N-acetylanthranilic acids by alkaline permanganate. For example, 2,5-dimethylindole \( A_{20} \) afforded N-acetyl-4-methylanthranilic acid \( A_{21} \), though small amount of dicarboxylic acid \( A_{22} \) is formed. The susceptibility of the pyrrole ring to oxidative attack is remarkably diminished by the presence of nitro groups. Thus, the oxidation of 2-methyl-3,4,6-trinitroindole \( A_{23} \) with alkaline permanganate leaves the indole ring intact, yielding \( A_{24} \).
Oxidations of indole derivatives by sodium periodate and periodic acid are interesting because of the diverse nature of the cleavage by these two oxidants. While sodium periodate cleaves the 2,3-double bond of indole ring, periodic acid oxidizes effectively the substituent at 2-position leaving the ring intact. Thus, 2,3-dimethylindole $A_{25}$
yields $\alpha$-acetamino acetophenone $A_{28}$ and 2-formyl-3-methylindole $A_{27}$ on oxidation with sodium periodate and periodic acid respectively.\textsuperscript{10,11}

When 3-methylindole is subjected to oxidation by peracetic acid 3-methyloxindole $A_{28}$ is formed, while perbenzoic acid oxidizes it to 2-formamidoacetophenone $A_{29}\textsuperscript{14}$. Sodium acetate and potassium persulfate oxidize 3-methylindole to 3-methyloxindole\textsuperscript{13} while ozone yields $A_{30}\textsuperscript{14}$. Perbenzoic acid oxidizes yohimbone and tetrahydroisoyobrin to compounds similar to $A_{30}\textsuperscript{14}$, while the alkaloid cinchonamine yields 3-hydroxyindolamine on oxidation with peracetic acid\textsuperscript{16}.

\begin{center}
\includegraphics[width=\textwidth]{chartvi.png}
\end{center}

\textbf{Chart VI}

Osmium tetroxide and ozone normally act on olefines where the former reagent yields a glycol and the latter gives aldehydes or ketones. Osmium tetroxide usually converts indole to 2,3-dihydroxyindoline. However, such glycols could be isolated only from N-substituted indoles\textsuperscript{16}. On oxidation with osmium tetroxide followed by treatment with base 2-3-butylindoles $A_{30}$ yield 3-3-butyldioxindoles $A_{31}\textsuperscript{17}$. This is due to a subsequent rearrangement of the glycol formed on treatment with osmium tetroxide. However, the base catalysed rearrangement of such glycols results in the formation of 2,2-disubstituted-3-indolinones\textsuperscript{18,19}.

The C$_2$-C$_3$ double bond is labile to ozonolysis and could be selectively cleaved\textsuperscript{20-22}. Many workers have studied the ozonolysis of indoles and isolated quite stable ozonides\textsuperscript{14,20,22-28}. The chemistry of the ozonide obtained from 2-phenyl-3-methylindole was extensively studied by Witkop \textit{et al}\textsuperscript{27,28}. 2-Phenyl-3-methylindole ozonide $A_{32}$ undergoes decomposition to form $A_{34}$ by heat or acid while it reacts with acetic anhydride to give $A_{34}$. Also, the same ozonide is reported to form $\alpha$-benzaminophenol $A_{35}$ on refluxing by a radical reaction\textsuperscript{28}.
N-acetylindoxyl $A_{35}$ yields N-acetyl anthranilic acid $A_{36}$ on oxidation with potassium permanganate, while acidic ferric chloride converts it to isatin $A_{37}$. In both the conversions, N-acetylisatin $A_{37}$ is a likely intermediate. This hypothesis is supported by the conversion of $A_{37}$ to $A_{38}$ by chromic acid, while the product of oxidation of isatin by chromic acid is isatoic anhydride $A_{39}$. Alkaline peroxide converts isatin to anthranilic acid $A_{40}$. Ferric chloride introduced a hydroxyl group at 2-position into ethyl indoxyl-2-carboxylate ($A_{41} ightarrow A_{42}$).

In nitration of indole-3-carboxaldehydes with nitric acid in acetic acid at 80°C, one of the principal side reactions is the nitration at C$_5$, accompanied by cleavage of the carboxaldehyde group. In several instances, nitroisatins and nitroanthranilic acids were observed as by-products of nitration. For example, 1-methylindole-3-carboxaldehyde $A_{43}$ afforded small amounts of 1-methyl-6-nitroisatin $A_{44}$, and N-methyl-5-anthranilic acid $A_{45}$.

Fremy's salt (potassium nitrosodisulfonate) effectively oxidizes hydroxyindoles to indoloquinones, though indoles without hydroxyl group are susceptible for hydroxylation in certain instances. Thus 5-hydroxyindoles are formed from 3-methylindole and 2-phenylindole by Fremy's salt. 5-Hydroxyindoles yield 4,5-quinones, while 4-hydroxyindoles gave a mixture of 4,5-quinones and 4,7-quinones.

Recently, Yukimasa et al. have investigated the oxidation of indoles in pyridine containing CuCl$_2$ in the presence of oxygen. Thus, 3-alkylindole $A_{47}$ and 2-methylindole gave C$_5$-C$_5$ cleavage products $A_{48}$ and N-acetylanthranilic acid $A_{49}$. Oxidation of
Oxidation of Indoles

Indoles in the presence of Co and Cu porphyrins gave ketoamides. For example, oxidation of 3-methylindole yielded \( A_{40} \)\(^{37} \).

Kaneko et al\(^{28} \) have very recently reported a novel indole trimer \( A_{41} \), which can be obtained by oxidation of indole with TiCl\(_4\) and H\(_2\)O\(_2\). This oxidation proceeds by a free radical mechanism.

Oxidation of indoles to corresponding oxindoles is achieved by N-bromosuccinimide treatment. Thus, when indole-3-propionic acid \( A_{42} \) in acetic acid is treated with N-
bromosuccinimide and hydrogenolysed over palladium, oxindole-3 propionic acid $A_{54}$ is obtained$^{28}$. This oxidation proceeds via intermediate formation of the bromolactone $A_{55}$. Further hydrogenolysis of the C-Br and the benzylic C-O bond yields $A_{56}$.  

\[ R \quad \text{Pyridine} \quad \text{Cu}_2\text{Cl}_2 \quad \text{COOR} \]

\[ \text{2-Methylindole} \quad \text{Pyridine} \quad \text{Cu}_2\text{Cl}_2 \quad \text{COOH} \]

\[ \text{3-Methylindole} \quad \text{Metallo-porphyrins} \quad \text{COCH}_3 \]

\[ \text{Indole} \quad \text{TiCl}_3 \quad \text{H}_2\text{O}_2 \quad \text{A}_{51} \]

Chart X

Chart XI
N-bromosuccinimide in acetic acid converts 3-methylindole to 5-bromo-3-methyloxindole A56. A56 could have formed by hydrolysis of 2-bromo-3-methylindole A55 and subsequent bromination. 2-Haloindoles very easily undergo hydrolyses yielding oxindoles. 3-Substituted indoles A57 are oxidized to oxindoles A58 by treatment of equimolar N-bromosuccinimide followed by hydrolysis. Further treatment with N-bromosuccinimide yields 3-bromooxindoles A59.

![Chart XII](image-url)
Da Settimo et al. have investigated the oxidation of indoles with bromine in acetic acid. Thus, indole is oxidized to bromooxindoles $A_{60}$ and $A_{61}$, while skatole is oxidized to bromo-3-methyl-oxindole $A_{62}$.

![Chemical structure of indole, bromooxindoles $A_{60}$ and $A_{61}$, and 3-methylindole, bromo-3-methyl-oxindole $A_{62}$]

Chart XIII

Oxindoles are also obtained by bromination of 3-substituted indoles in pyridine and subsequent hydrolysis. A general method for the oxidation of indoles to oxindoles has been reported recently. Thus, oxindoles $A_{63}$ were obtained in 51–82% yield by oxidizing indoles with $\text{Me}_2\text{SO-HCl}$.

![Chemical structure of 3-alkylindole, and oxindole $A_{63}$]

Chart XIV

Halogenation by N,N-dichlorourethane, a source of positive halogen, has been investigated by Foglia and Swern. 3,3,5-Trichlorooxindole $A_{64}$ is formed from indole, indole-3-carboxylic acid $A_{64}$ and indole-2-carboxylic acid $A_{65}$ on reaction with dichlorourethane in aqueous solution. But, when methyl esters were subjected to oxidation, the carboxyl groups were not lost ($A_{67} \rightarrow A_{68}$).

Another method of oxidation of indoles to oxindoles involves treatment of 3-methylindole and other products with potassium persulfate. But, this method is of little application in synthesis.
2-Methylindole readily gets oxidized by a variety of oxidizing agents. Two molecules of 2-methylindole readily combine to form \( A_{66} \) in the presence of air and peracetic acid. Same reaction is carried out by hydrogen peroxide\(^{39,40} \). Indole yields 2,2-di-3-indoly-3-indolinone under similar conditions. 2-Alkylindoles are oxidized by hydrogen peroxide in acetic acid to compounds analogous to \( A_{71} \) in concentrated solutions, but in dilute solutions the symmetric coupling products \( A_{75} \) are formed. This compound \( A_{75} \) might be formed from \( A_{74} \) by a subsequent oxidation or from \( A_{74} \)^{49}.

Another reaction that has immense value in degradative structure elucidations is oxidation with hydrogen peroxide\(^{60,61} \). In the presence of ammonium molybdate, hydrogen peroxide selectively cleaves the \( \text{C}_2-\text{C}_3 \) bond of indole ring\(^{35,36} \). 2-Substituted indoles yield 2-acylanthranilic acids and 2,3-disubstituted indoles give \( \alpha \)-aminophenyl ketones.
Oxidation of Grignard derivatives of indoles with hydrogen peroxide also needs a special mention here, though this study is normally without definite results. Oxidation of Grignard derivative of indole with p-nitro perbenzoic acid gives 3-bromoindole.

3. Autoxidation

The determination of the structure of the hydroperoxides formed from oxygen and tetrahydrocarbazoles by Beer et al. and a series of papers by Witkop and coworkers which considered the paths and mechanisms of oxidation for a number of indole derivatives served as a firm basis to understand the nature of reaction between oxygen and indole. Early work involved the isolation of crystalline peroxides and their structure elucidation. Thus, the structure of hydroperoxide was shown to be $B_9$. These hydroperoxides are the primary products of autoxidation of indole in the presence of oxygen which undergo subsequent reactions to yield different products. However, preparation of hydroperoxides from simple indoles like 2-methyl-3-phenylindole and 2,3-diphenylindole met with little success. It was, hence, believed that these indoles are resistant to oxygen, which was proved wrong by autoxidation of 2-benzyl-3-phenylindole to 3-phenylidioxindole.

The peroxides are susceptible to reduction. Thus, they are reduced to alcohol $B_8$ by dithionite. On treatment with acid or alkali $B_8$ gives $B_4$. $B_8$ is converted to the lactam $B_8$ under slightly acidic or neutral conditions. The probable mechanism for the formation of $B_8$ is via $B_8 (B_8 \rightarrow B_8 \rightarrow B_8)$. 

Chart XVII
Chart XVIII

Indoxyl $B_7$ is formed on autoxidation of indole in the presence of light which subsequently forms either indigo $B_8$ or $B_11^{64,67}$. $B_{11}$ is very likely a condensation product of indoxyl red $B_{10}$ and indole$^{68}$. Indoxyl red is formed from indoxyl $B_7$ via leucoindoxyl red $B_9$. 

Chart XIX
2-Acetyl-3-ethylindole $B_{13}$ is formed on autoxidation of 2,3-diethylindole $B_{12}$\textsuperscript{89}. But autoxidation of 2,3-dimethylindole $B_{14}$ results in the formation of small amounts of 2-formyl-3-methylindole $B_{15}$ in addition to the major product, $B_{16}$\textsuperscript{70}. The initiation of this oxidation is through generation of hydroperoxide $B_{17}$ by the attack of oxygen at 3-position\textsuperscript{89}. This was supported by isolation of the hydroperoxide of $B_{12}$ and its conversion to $B_{13}$ on heating. These reactions can be explained by a mechanism proposed by Taylor\textsuperscript{70}. Thus $B_{17}$ and $B_{18}$ are in equilibrium, while the enamine form $B_{18}$ is favoured by alkyl substitution. $B_{18}$ undergoes allylic rearrangement to yield $B_{19}$, which ultimately decomposes to $B_{20}$.

![Chart XX](chart.png)

When oxygen was bubbled into a hexane solution of 2-isopropyl-3-methylindole $B_{21}$ in the presence of azobisisobutyronitrile, the initial product formed was indolenine hydroperoxide $B_{22}$. Longer exposure to oxygen yielded the oxindole $B_{24}$. The third product isolated from the reaction mixture was the hydroxy acylamino acetophenone derivative $B_{25}$. These products formed the basis for another mechanism, in which the hydroperoxide rearranged to dihydroxyindolenone $B_{26}$. Addition of a hydroperoxide molecule to $B_{23}$ followed by fragmentation yields $B_{24}$ or $B_{25}$\textsuperscript{71}.

Chen and Leete\textsuperscript{64} have reported the oxidation of 2-benzyl-3-phenylindole $B_{26}$ to 3-phenyldioxindole $B_{27}$. But, on catalytic oxidation $B_{26}$ yielded 2-benzoyl-3-phenylindole
Chart XXI

B28. These two oxidation products of B25 are apparently formed by two distinct routes since B28 was not converted to B27 on exposure to air.

Effect of substituents on the susceptibility of the indole ring to autoxidation was also investigated. Electron releasing substituents such as amino, alkyl, at C2 and C3 were found to activate the indole nucleus and hence facilitate the autoxidation. Thus, 3-aminoindoles undergo autoxidation very easily. 3-Amino-1-methyl-2-phenylindole B29 on exposure to air gives B30 or its ring-chain tautomer B31, while 3-amino-1,2-diphenylindole B25 yields B32. These reactions suggest that the initial attack of oxygen is at C-2 of the indole ring. In contrast to this, when the electron releasing substituent is at C-2, the active site of oxidation is C-3. Thus, ethoxy and ethylthio groups at C-2 of 3-methylindolenines B34 give corresponding 3-hydroxyindolenines B35.

2-Methylindole undergoes to autoxidation to yield an unsymmetric dimer B36, while 1-hydroxy-2-phenylindole B27 reacts with oxygen to give a symmetric dimer B38.

4. Biological oxidation

Owing to the physiological importance of the indole ring, considerable interest has been generated in the bio-transformations of indole and its derivatives. Particularly tryptophan and tryptamine have attracted much attention because of the possibility that abnormal metabolism of tryptamines may be involved in certain mental disorders.
Abnormal metabolism of indole has been reported in Hartnup disease\(^{77}\) and schizophrenia\(^{78-79}\).

For the sake of convenience the oxidation of indoles in biological systems can be divided into ring cleaving oxidations and hydroxylations that leave the indole ring intact. In biological systems it is known that the ring cleavage is often facilitated if the carbon atoms between which cleavage occurs are hydroxylated. This section deals with such metabolic transformations and pathways.
Prior to enzymatic studies of indole metabolism, there was an active interest in establishing the metabolic pathways by isolation of intermediates. First choice of convenience for such studies were micro-organisms wherein it proved fairly simple and easy to establish the pathway for the degradation of tryptophan.

Using the technique of simultaneous adaptation, Suda et al. elucidated the pathway for the metabolism of tryptophan in an unidentified strain of *Pseudomonas* which was adapted to grow on a tryptophan medium. These cells were able to oxidize kynurenine, anthranilic and catechol but not other theoretically possible intermediates. The cells could not utilize D-tryptophan. Stanier and Tsuchida carried out similar studies with another unidentified strain of *Pseudomonas*. They found that both isomers of tryptophan were attacked by these cells. The cells were also adapted to utilize kynurenine and kynurenic acid but not anthranilic acid. These observations showed the existence of two distinct routes for the metabolism of tryptophan (Fig. 1).

![Degradation of tryptophan](image)

**Fig. 1.** Degradation of tryptophan.
The oxidation of tryptophan through the intermediate formation of anthranilic acid is known as the aromatic pathway and the alternative route is known as the quinoline pathway.

A detailed study of the aromatic pathway of tryptophan-adapted cells was carried out by Hayaishi and Stanier. They employed spectrophotometric and oxygen uptake techniques with cell suspensions to establish the pathway. Since tryptophan, kynurenine and anthranilic acid have sharp and distinct absorption in the region between 250 nm and 360 nm, the spectrophotometric method proved to be ideal for the identification and estimation of these compounds.

In certain metabolically aberrant strains of Pseudomonas an abnormality in tryptophan oxidation was observed. These strains excreted anthranilic acid into the medium and studies with cell suspension showed that tryptophan and kynurenine were rapidly converted to anthranilic acid which was isolated from the medium and characterised by comparing its properties with those of the authentic sample. Anthranilic acid was oxidised only slowly by these cells, whereas catechol was oxidised at a normal rate. This pointed out that the abnormality in the metabolism was caused by an enzyme deficiency.

Stanier and Hayaishi studied the conversion of tryptophan with extracts of tryptophan-grown cells and such extracts were found to be capable of converting tryptophan to β-ketoadipic acid via kynurenine, anthranilic acid and catechol (Fig. 2). They were able to show the conversion of tryptophan to kynurenine and then to anthranilic acid, and the oxidation of both anthranilic acid and catechol to β-ketoadipic acid. The inducible nature of these enzymes was shown by parallel studies, with adapted and non-adapted cells. These studies clearly showed that non-adapted cells did not contain enzymes active in tryptophan metabolism, specifically tryptophan peroxidase and kynureninase.

Some of the enzymes of the tryptophan oxidation system in Pseudomonas were found to be highly unstable. If freshly prepared extracts with a high endogenous respiration were used at a high concentration, the oxidation of tryptophan, kynurenine, anthranilic acid and catechol could be demonstrated.

Sakamoto et al. who studied the decomposition of indole in a tap water bacterium detected isatin, formylanthranilic acid, anthranilic acid, salicylic acid and catechol in the culture filtrate. Based on these findings the following pathway was proposed for the degradation of indole: Indole → Indoxyl → dihydroxyindole → isatin → formylanthranilic acid → anthranilic acid → catechol (Fig. 4). Fuzioka and Wada isolated a soil microorganism which utilized indole as sole source of carbon and nitrogen. Dihydroxyindole was detected as the intermediate in the metabolism of indole. Direct evidence for the formation of dihydroxyindole as intermediate was not obtained since indole was oxidized to anthranilic acid without the accumulation of dihydroxyindole. However, when skatole was incubated with indole-grown cells, the compound was ox-
Oxidation of Indoles

Fig. 2. Oxidative pathway of tryptophan.

Dализed with the consumption of one mole of oxygen per mole of the substrate to (+)-2-oxo-3-methyl-3-hydroxyindoline. This compound was not further metabolized by the organism. Skatole does not have a β-hydrogen atom and hence enolization of the intermediate formed is not possible. Therefore, ketyl accumulates in the medium. The formation of 2-oxo-3-methyl-3-hydroxyindoline from skatole and the induction of dihydroxyindole oxygenase by indole strongly suggest that indole is metabolized to anthranilic acid via dihydroxyindole (Fig. 4). Indole oxygenase was also partially purified from the soil organism.

The enzyme catalysing the oxidation of indole to dihydroxyindole could not be solubilized. The activity was found to be associated with the cellular debris. Though an epoxide mechanism has been proposed by the authors, a cyclic peroxide intermediate is more likely as the formation of 2-oxo-3-methyl-3-hydroxyindoline from skatole could be better explained with the cyclic peroxide intermediate rather than epoxide intermediate (Fig. 3).

The enzymes responsible for the ring cleaving oxidation of indole derivatives have been purified and characterized in certain instances. The indole nucleus of tryptophan
FIG. 3. Oxidation of indole by bacteria.

is cleaved between C₄ and C₅, yielding N-formylkynurenine. This reaction is catalysed by tryptophan-2,3-dioxygenase which contains a ferroporphyrin⁹⁹ and probably copper⁹⁰. This reaction might proceed via the intermediate formation of 3H-indolylhydroperoxides. A number of reviews are available on this oxidation catalysed by tryptophan-2,3-dioxygenase⁹¹-⁹⁴.

Hayashi and his coworkers have made extensive studies on indoleamine-2,3-dioxygenase, hemoprotein which catalyses the oxidative ring cleavage of tryptophan and
several other indoleamine derivatives. This enzyme is interesting because there is clear-cut evidence for \( \text{O}_2^- \) (superoxide anion) participation in the catalytic process. The enzyme activity was drastically inhibited by superoxide dismutase, while catalase does not inhibit the activity. But catalase is necessary for the enzyme activity for protecting the enzyme from \( \text{H}_2\text{O}_2 \) produced from \( \text{O}_2^- \). Because of the absolute necessity of \( \text{O}_2^- \) for the enzyme activity, Sono and Hayaishi have classified this into a new category of enzymes. However, there are many unexplained problems regarding how the enzyme utilizes \( \text{O}_2^- \) for cleaving the indole ring. This enzyme has been discussed in detail in their recent review.

Comparatively more attention was paid to the oxidation of indole in higher plants than in microorganisms. A powerful indole oxidising system which converts indole to anthranil, by a 2,3-dioxygenase type of reaction, was isolated in 1964. The partially purified enzyme from fresh, mature leaves of *Tecoma stans*, oxidized indole with the consumption of three atoms of molecular oxygen. By trapping experiments, the immediate ring cleaved product was identified as \( \text{N}-\text{formylaminobenzaldehyde} \). Based
on chemical and enzymological studies, the reaction sequence shown in fig. 4 has been established to be one which is involved in the conversion of indole to anthranil.

The enzyme system showed a pH optimum of 5.0 and was found to be remarkably stable at acidic pH. It was highly susceptible to pH changes in neutral and alkaline conditions. There was a sudden drop in activity on the pH range 5.8-6.2; almost 60% of the activity being lost over the range of 0.4 pH unit.

Among various metal ions tested only Hg²⁺, Fe⁺⁺, and Fe⁺³ were inhibitory to the reaction. Metal chelating agents such as 8-hydroxyquinoline, diethyldithiocarbamate and salicyaldioxide inhibited the *Tecoma* enzyme to varying degrees. The inhibition caused by the latter two reagents could be reversed only by Cu⁺² ion, and not by any other metal ions. These studies, taken together with the reconstitution of enzymes activity in the dialysed preparations by Cu⁺² ion, showed that indole oxidase is a cupro-protein. Unlike tryptophan-2,3-dioxygenase* and indoleamine-2,3-dioxygenase* *Tecoma* enzyme did not possess heme cofactor.

In addition to Cu⁺², the indole oxidase system also required FAD. Atebrin inhibited the reaction drastically and the inhibitions could be reversed by the addition of FAD. The dialysed enzyme, which is inactive, could be reactivated by the addition of both Cu⁺² and FAD, thereby showing the flavin requirement for the reaction. Though it is possible to explain the FAD requirement for the second oxidation step, in view of the finding that pyridine dioxygenase requires flavin to show full activity*¹⁰*, it can be speculated that flavins are involved in the indole dioxygenase reaction as well. However, further purification and fractionation of the individual enzymes are necessary to answer this problem.

Studies on the effect of sulfhydryl reagents and sulfhydryl compounds revealed that a sulfhydryl-cupric ion complex at the active site is essential for the reaction*¹⁰⁹*.

An enzyme activity which brings about a rapid indole disappearance has been detected in cell-free extracts of maize (*Zea mays*) leaves*¹⁰⁴*. The indole utilization by this enzyme system is not dependent on serine and pyridoxal phosphate. It does not result in the incorporation of radioactive indole or serine into tryptophan. The products of indole oxidation were characterized as anthranilic acid and anthranil (Fig. 4). The enzyme activity is strongly inhibited by dithionite and diethyldithiocarbamate. The inhibition by the latter could be specifically removed by Cu⁺². The activity of dialysed enzyme could be restored by addition of Cu⁺² and FAD. The activity of the indole oxidizing system was two to three times higher in normal maize varieties (Ganga-2 and Ganga-5) than in Opaque-2.

Divakar *et al*¹⁰⁵ have purified an indole oxygenase from the leaves of *Jasminum grandiflorum*. This enzyme is also a cupro flavoprotein as evidenced by inhibition of the reaction by atebrin and diethyldithiocarbamate. This inhibition could be reversed by FAD and Cu⁺². The enzyme activity is completely lost on dialysis which could be
completely restored by the addition of FAD and Cu²⁺. The approximate molecular weight of the enzyme is 40,000. Both thiol compounds and thiol reagents drastically inhibited the enzyme activity.

The purified indole oxygenase was yellow in colour and the visible spectrum of the enzyme showed absorption maxima at 370 and 440 nm. The fluorescence spectrum of the enzyme was typical of a flavoprotein with an excitation maximum at 380 nm and 460 nm and an emission maximum at 520 nm. Approximately 0.75 g atoms of copper are present per mole of the enzyme. The enzyme activity was inhibited by substrate and this inhibition was abolished by addition of copper. The enzyme is highly specific for indole with a km value of 16 μM. The products of the reaction were identified as anthranilic acid and hydrogen peroxide.

We have recently reported a new indole oxygenase from the leaves of *Tecoma stanis*, which catalyses the conversion of indole to anthranilic acid. It is optimally active at pH 5.2 and 30°C. Two moles of oxygen are consumed and one mole of anthranilic acid is formed for every mole of indole oxidized. Neither thiol compounds nor thiol reagents inhibited the enzyme activity. The oxygenase also attacks apart from indole 5-hydroxyindole, 5-bromoindole and 5-methylindole. It is not inhibited by copper specific chelators or non-heme iron specific chelators. Atebrin did not inhibit the enzyme activity suggesting that it is not a flavoprotein, unlike other indole oxidases and oxygenases. Dialysis resulted in complete loss of enzyme activity. The inactive enzyme could not be reactivated by addition of various cofactors including FAD and Cu²⁺. This enzyme converts o-aminobenzaldehyde, one of the proposed intermediates, to anthranilic acid. The scheme for the oxidation of indole is shown in fig. 4. Thus, two enzymes exist in *Tecoma stanis* acting on the same substrate leading to two different pathways of indole.

4.2. Hydroxylation of indoles

Hydroxylation of indoles in higher organisms is important for it forms the basis of detoxifying mechanisms. As it has been pointed out in chemical oxidation of indoles, the most reactive position in indole is C₃. In many biological systems also the preferred site of oxidation is 3-carbon atom. However, if this highly reactive position is already substituted then the preferred region of hydroxylation is C₆.

Indole was oxidized by slices or homogenates of rat or rabbit liver; the oxidation was not inhibited by CN⁻, NaF, α,α’-dipyridyl or H₂O₂. In vivo experiments with liver, kidney, muscle and brain of rabbits have shown that all are active in converting indole to indoxyl. The kidney is more active. Eiichi Tahata has reported the conversion of indole to isatin, indican, anthranilic acid and urochrome in the isolated rabbit liver. The decomposition of indole in rabbit liver is enhanced by Vitamin C and B₁₂, which indicates that these vitamins may take part in this reaction.
Indole injected into the portal vein of a Chloralose dog appears in the hepatic vein as indoxyl. Indole was brought in contact in vitro with washed tissue of liver, kidney, lung and brain. Only liver and lung perform the oxidation of indole to indoxyl, and it may be that the lung contained blood which caused the change.\(^{118}\)

In mammals, including humans, there are reports of hydroxylation at 6-carbon atom of the indole ring.\(^{114}\) Hydroxylation at 5-carbon atom of oxindoles in rats, guinea pigs and rabbits has been reported.\(^{115}\) Cell-free preparations of rat liver could also carry out the rather unusual hydroxylation at C\(_5\) of indole.\(^{116}\) Recently, when indole-2-\(^{14}\)C was used for metabolic studies in rat, the radioactive label could be traced to indoxyl, oxindole, isatin, N-formyl anthranilic acid and derivatives of 5-hydroxyindoles.\(^{116, 117}\)

Kluyver has reported the oxidation of indole to indigo by bacteria. Indole is oxidized at the 3-position by a strain of Claviceps purpurea to 2,2-bis (3-indolyl) indoxyl.\(^{119}\) Ohims et al. have shown that two moles of indole were oxidized to form 1 mole of indigotin in Pseudomonas indoloxidans with indoxyl being detected as an intermediate in the reaction.

Earlier work by Sebek and Jaget\(^{118}\) reveals divergent pathways of indole metabolism in Chromobacterium violaceum. This organism metabolizes L-tryptophan to indole by the reaction of tryptophanase. Growing and washed cells synthesize violacein from indole. Since 5-hydroxyindole and related compounds are not converted to violacein by the organism, hydroxylation must occur at a later stage in synthesis. Rapid lyophilization of washed cells inactivates enzymes of the violacein pathway and indole is metabolized to indigo via indoxyl.

From IR and mass spectral data, recently Sheinkman et al.\(^{112}\) have reported the oxidation of indole in soil to give mainly 2,2-bis (3-indolyl) indoxyl \(B_1\) along with small amounts of indirubin, and indigo. 2-Methylindole is transformed into indigo via indoxyl.

According to Corbett and Chipko,\(^{118}\) indole is oxidized by \(H_2O_2\) in the presence of chloroperoxidase to give oxindole as the major product. Under most conditions, oxindole was the only product formed, and under optimal conditions the conversion was quantitative. 2-Methylindole was not affected by \(H_2O_2\) and chloroperoxidase, but was a strong inhibitor of indole oxidation. 1-Methylindole was a poor substrate and a weak inhibitor of indole oxidation. However, oxidation of indole with \(H_2O_2\) and horse radish peroxidase yields 2,2-bis (3-indolyl)-indoxyl and other products.\(^{124}\) \(H_2O_2\)-peroxidase oxidation of skatole and 3-chloroindole does not yield indoxyl, nor does 3-chloroindole yield chloride.

The microsomes of pea seeds catalyse the hydroxylation of several compounds depending on the specific hydroperoxidases. The hydroxylation of indole as the model substrate was studied in detail by Ishimaru and Yamazaki.\(^{112}\) It appears that an equimolar
amount of hydroperoxide is reduced to alcohol during the hydroxylation of indole. A trivial name, peroxygenase, is proposed for this type of enzymes.

Horvath has shown that much more 4-hydroxyindole than 5-hydroxyindole was produced when homogenized, etiolated pumpkin (Cucurbita pepo) seedlings were incubated with indole. Exposure to light for 5 hr decreased the degree of indole hydroxylation in 3- and 6-day old seedlings. For light grown seedlings, much more 4-hydroxyindole was produced by the roots than by the shoot.

Infiltration of pedunculate oak (Quercus robur), horse chestnut (Aesculus hippocastanum) and sumac (Rhus trichocarpa) leaves with indole followed by 24 hr incubation gave a product identified as 2,2-bis-(3-indolyl) indoxyl. Hydroxylation at the 5 and 6 positions of indole by leaf and stem tissues of Tradescantia albiflora, T. venezuelensis, T. fluminensis, T. blossfeldiana, T. sillamontana, Zebrina pendula, Z. purpurea and Seterasia purpurea was detected by Horvath.

An important biological compound containing indole ring is indole-3-acetic acid, a plant growth hormone. This compound is oxidized to 3-methyleneoxindole by horse radish peroxidase. This transformation is quite unusual compared to other modes of oxidation. A mechanism was proposed via the intermediate formation of 3-hydroxyindolenine and its decomposition by intramolecular participation of the acetic acid side chain (fig. 5). The spectral changes associated with this reaction have also been studied.

Light dependent oxidation of indoleacetic acid and its analogs occurred in Triton-X-100 solubilized chloroplasts. Solubilized chloroplasts showed high rates of light dependent oxygen uptake when indoleacetic acid was present. This reaction is mediated by chlorophyll and does not require the participation of enzymes. The chlorophyll dependent oxidation of various indoles was also observed.

Hydroxylation of indoleamines is generally at 5-carbon atom. The physiologically important amine serotonin is not a product of direct hydroxylation of tryptamine but it is formed by 5-hydroxylation and decarboxylation of tryptophan as shown in fig. 6. Direct hydroxylation of tryptamine and related compounds is also achieved. Similar to indole, they are hydroxylated at 6-carbon by liver microsomes. Generally amines are known to be metabolized by oxidative deamination. However, 3-(2-acetoxyethyl)-5-methoxyindole is metabolized after hydroxylation at 7-carbon atom. But not much is known about the enzymes involved in hydroxylation.

In contrast to the general trend of hydroxylation at 6-carbon atom, in many biological systems and with enzyme preparations tryptophan is hydroxylated at 5-position. During this reaction a proton from C6 shifts to C4. This is comparable to NIH shift reported in non-indolic aromatic hydroxylations. Thus, there is a possibility of arene oxide formation as an intermediate in aromatic hydroxylation in bio-
5. Concluding remarks

A comparison of the various types of oxidations discussed in this review may give us an insight into the probable mechanisms operating in biological systems that bring about metabolic transformations of indoles, whether they be hydroxylations or ring cleaving type of oxygenation. In many cases, metabolic pathways have been reported...
Oxidation of indoles

Based only on isolation of various intermediates and further research should centre on the isolation of the enzymes for the proposed pathways. In a few cases where the enzymes have been purified not much work has been done to establish the mechanisms of the catalysed reactions. Since chemical oxidations have yielded a variety of products and intermediates which have been isolated and well characterised, attempts can now be made to utilise these intermediates to elucidate the mechanism of action of purified enzymes. For example, it could be tested whether intermediates of chemical oxidation are also reactive intermediates in catalytic conversions by enzymes. In chemical oxidations of indoles there are no reports of hydroxylations. Thus, hydroxylations of indoles may be unique to biological systems serving either as detoxifying mechanisms or forming some physiologically important compounds like 5-hydroxytryptamine. In the same way, ring cleaving enzymatic oxidations of indoles may play a key role in controlling levels of serotonin and thus further studies on these lines may help in understanding the chemical basis of personality disorders like schizophrenia.

Fig. 6. Biosynthesis of serotonin.
Acknowledgement

S. P. K. is thankful to the University Grants Commission, New Delhi, for financial assistance.

References

17. Piozzi, F. and Cecere, M.


19. Van Tamealen, E. E., Siebrasse, K. V. and Hester, J. B.

20. Mentzer, C., Molho, D. and Berguer, Y.

21. Mentzer, C., Molho, D. and Berguer, Y.

22. Witkop, B.

23. Bert, G., Da Settimi, A. and Segnini, D.

24. Clerc-Bory, M.

25. Karrer, P. and Ensln, P.

26. Mills, B. and Schofield, K.

27. Witkop, B. and Patrick, J. B.

28. Witkop, B.,Patrick, J. B. and Kissman, H. M.

29. Witkop, B. and Patrick, J. B.

30. Kolbe, H.

31. Sumpter, W. C. and Jones, W. F.

32. Acheson, R. M. and Booth, S. R. G.

33. Berti, G., Da Settimi, A. and Livi, O.

34. Teuber, H. J.

35. Teuber, H. J. and Staiger, G.

Oxidation of Indoles


J. Am. Chem. Soc., 1951, 73, 713.

J. Prakt. Chem., 1884, 30, 84.


Angew. Chem., 1956, 68, 628.

36. Yukimasa, H., Sawai, H. and Takizawa, T.


37. Dufour-Ricroch, M. N. Gaudemer, A.


38. Kaneko, T., Matsuo, M. and Iitaka, Y.

Heterocycles, 1979, 12, 471.

39. Lawson, W. B. and Witkop, B.


40. Lawson, W. B., Patchornik, A. and Witkop, B.


41. Sundberg, R. J.


42. Hinman, R. L. and Bauman, C. P.


43. Da Settimi, A., Santerini, V., Primofiore, G., Biagi, G. and Veneziano, C.


44. Kobayashi, T. and Inokuchi, N.


45. Szabo-Pusztay, K. Szabo, L.


46. Foglia, T. A. and Swern, D.


47. Heacock, R. A. and Mahon, M. E.


48. Witkop, B.


49. Piozzi, F. and Langella, M. R.


50. Suehiro, T.

Chem. Ber., 1963, 100, 905 and 915.

51. Suehiro, T. and Nagawaka, A.


52. Clerc-Bory, G., Clerc-Bory, M., Pacheco, H. and Mentzer, C.


53. Mentzer, C. and Berguer, Y.

54. Guise, G. B., Ritchie, E. and Taylor, W. C.

55. Witkop, B. and Patrick, J. B.

56. Mousseron-Canet, M. and Boca, J. P.

57. Beer, R. J. S., McGrath, L. and Robertson, A.

58. Witkop, B.

59. Witkop, B.

60. Witkop, B. and Goodwin, S.

61. Witkop, B. and Patrick, J. B.

62. Witkop, B., Patrick, J. B. and Rosenblum, M.

63. Beer, R. J. S., Donavanik, T. and Robertson, A.

64. Chen, F. Y. and Leete, E.

65. Patrick, J. B. and Witkop, B.

66. Oddo, B.

67. Baudisch, O. and Hoscheck, A. B.

68. Seidel, P.

69. Leete, E.

70. Taylor, W. I.

71. Wasserman, H. H. and Floyd, M. B.

72. Bird, C. W.

73. Hino, T., Nagawaka, M. and Akaboshi, S.

74. Witkop, B.

---

**OXIDATION OF INDOLES**


J. Am. Chem. Soc., 1951, 73, 2188.


J. Am. Chem. Soc., 1951, 73, 2196.


75. Colonna, M. and De Martino, U.

76. Woolley, D. W.

77. Jepson, J. B.

78. Springe, H.

79. Springe, H.

80. Suda, M., Hayaishi, O. and Oda, Y.

81. Wightman, F.

82. Stanier, R. Y. and Tsuchida, M.

83. Stanier, R. Y. and Hayaishi, O.

84. Stanier, R. Y. and Hayaishi, O.

85. Wiss, O.

86. Sakamoto, Y., Uchida, M. and Ichihara, K.

87. Fujio, M. and Wada, H.

88. Subramanian, V., Sugumaran, M. and Vaidyanathan, C. S.

89. Tanaka, T. and Knox, W. E.

90. Maeno, H. and Feigelson, P.

91. Crandall, D. I.

92. Hayaishi, O.

93. Knox, W. E. and Tokyama, K.

94. Mehler, A.

95. Ullrich, V. and Staudinger, H. J.

---


Symposia on enzyme chem. (Tokyo), 1949, 1, 79.


J. Bact., 1949, 58, 45.

J. Bact., 1951, 62, 355 and 367

J. Bact., 1951, 62, 690.


96. Feigelson, P. and Brandy, F. O.

97. Hayashi, O., Hirata, F., Fujiiwara, M., Ohnishi, T. and Nukiwa, T.

98. Hayashi, O.


100. Hirata, F., Ohnishi, T. and Hayashi, O.

101. Sono, M. and Hayashi, O.

102. Nair, P. M. and Vaidyanathan, C. S.

103. Sparrow, G.

104. Chauhan, Y. S., Rathore, V. S., Garg, G. K. and Arun Bhargava

105. Divakar, N. G., Subramanian, V., Sugumar, M. and Vaidyanathan, C. S.

106. Kunapuli, S. P., Vaidyanathan, C. S.

107. Posner, H. S., Mitoma, C. and Udenfriend, S.

108. Williams, R. T.

109. Garcia-Blanco, J. and Nacle, J.


111. Tahata, E.


Biochim. Biophys. Acta. 1964, 81, 496.


Fukuoka-Igaku Zasshi, 1959, 50, 4751.
112. Ichihara, K., Sakamoto, Y., Kometani, K., Inova, F. and Kotake, M.

113. Laroché, G. and Desborodes, J.

114. Horning, E. C., Sweeley, C. C., Dalgliesh, C. E. and Kelly, W.


116. King, L. J., Parke, D. V. and Williams, R. T.

117. King, L. J., Parke, D. V. and Williams, R. T.

118. Kluiver, A. J.

119. Loo, Y. H. and Woolf, D. O.

120. Oshima, T., Kawai, S. and Egami, F.

121. Sebek, O. K. and Jager, H.


123. Corbett, M. D. and Chipko, B. R.

124. Holmes-Siedle, A. G. and Saunders, B. C.

125. Ishimaru, A. and Yamazaki, I.

126. Horvath, M. M.

127. Medvedev, V. A., Korshikov, I. I., Bashkatov, V. G. and Tarabrin, V. P.
128. Horvath, M. M.  

129. Horvath, M. M., Guba, F., Hanusz, B. and Kiraly, L.

130. Hinman, R. L. and Lang, J.

131. Fox, L. R., Purves, W. K. and Nakada, H. I.

132. Tamas, I. A., Sherman, D. B., Becker, J. D. and Oberlander, R. M.

133. Erspamer, V.

134. Udenfriend, S., Creveling, C. R., Posner, H., Redfield, B. G., Daly, J. and Witkop, B.

135. Jepson, J. B., Zaltzman, P. and Udenfriend, S.

136. Garantitinni, S. and Valzelli, L.

137. Delvigs, P. and Taborsky, R. G.

138. Hagen, P. B. and Cohen, L. H.

139. Grahame-Smith, D. G.

140. Lovenberg, W., Levine, R. J. and Sjoerdsma, S.

141. Mitoma, C., Weissbach, H. and Udenfriend, S.

142. Nakamura, S., Ichiyama, A. and Hayashi, O.

143. Freedland, R. A.

144. Biochem., 1965, 4, 144.


