Short Communication

Parallel synthesis of α-hydroxy β-amino amide containing peptide derivatives as structural analogues of Bestatin†

E. N. Prabhakaran, S. Rajesh, Madhav M. Reddy and Javed Iqbal*#
Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
email: jiqbal@iitk.ernet.in.

Received on September 26, 2000.

Abstract

A solution-phase polyaniline-supported cobalt(II) salen-catalyzed synthesis of libraries of α-hydroxy β-amino amide containing dipeptide derivatives was developed from N-cinnamoyl peptides as versatile synthon in parallel synthesis. These peptides are structural analogues of amino peptidase inhibitor bestatin.

Keywords: Parallel synthesis, peptides, drug discovery.

The increasing demand for new chemical entities has paved the way for the emergence of parallel synthesis† in the arena of drug discovery. Parallel synthesis circumvents the disadvantages associated with the synthesis of compound mixtures and promises to provide an efficient protocol for the preparation of a single compound in solution. In connection with our work on new drug discovery, we required a procedure which may allow access to single-compound libraries from well-known chemical transformations. Our attention was focused on libraries containing peptides having α-hydroxy-β-amino acid residue. This residue is prominent in bioactive molecules such as amino peptidase inhibitors bestatin3 and probestin4. This paper describes the synthesis of β-phenylisoserine-(L)-leucine-(L)-proline containing tripeptide derivatives (3), as structural analogues of aminopeptidase inhibitor bestatin and probestin, from N-cinnamoyl dipeptides by a one-pot cobalt-catalyzed conversion using a combined protocol involving epoxidation and subsequent reaction with aniline derivatives (Scheme 1). These peptides were

*Dedicated to Prof. S. C. Bhattacharyya.
#Present address: Dr. Reddy’s Research Foundation, Bollaram Road, Miyapur, Hyderabad 500 050, India, Phone: 91-40-3045439; Fax: 91-40-3045438.
*Author for correspondence.
isolated by circumventing the column chromatography via a solvent extraction technique. The \textit{in-situ} synthesis of epoxides (2) from \textit{N}-cinnamoylpeptides (1) can be obtained in a stereoselective manner by polyaniline-supported cobalt(II) salen-catalyzed5 aerobic epoxidation as reported by us earlier (Scheme 1).

\textbf{Table I}

\textbf{Tripeptide derivatives (3) as structural analogues of \textit{Bestatin}}a,b

(a) The tripeptides were obtained as a 1:4 mixture of diastereomers in which the antidiastereomer was obtained as the major product. (b) The isolated yields of the tripeptides were \textasciitilde 60–70\% and the HPLC purities \textasciitilde 80–90\%.

\textbf{Scheme 1.}
The N-cinnamoyl peptides were used as synthons in a one-pot vicinal hydroxyamination reaction in parallel and we have prepared a 150-member library. Some representative examples of this library are shown in Table I. Thus, the one-pot conversion\(^6,7\) of N-cinnamoyl peptides (1a or b) to the corresponding peptide derivatives (3a–f), respectively, was achieved by first polyaniline-supported cobalt(II) salen-catalyzed aerobic epoxidation followed by the opening of the epoxides with various aniline derivatives (i.e. p-methylaniline, p-methoxyaniline, p-bromoaniline and m-aminophenol) in the presence of the same catalyst. The peptides (3) were obtained as mixture of diastereomers in 60–70% yields in which the anti isomer (4:1) was found to be the major product. The peptides (3) were isolated by filtering the cobalt catalyst and removing the acetonitrile followed by washing of the residue in carbon tetrachloride: hexane (1:3) which resulted in their precipitation as powder. The excess amine and any unreacted epoxide were retained in the mother liquor and this process afforded >80% pure desired peptides.

Because of the difference in the solubility of peptides (3) and aniline derivatives, the solvent extraction procedure for the isolation of these peptides is very simple, as it does not require any aqueous work up or column chromatography. Interestingly, the conversion using 1a or b and meta aminophenol afforded the corresponding peptides 3d or f, respectively, mainly as anti diastereomer and no product arising due to opening of the epoxide with phenolic oxygen was observed in the reaction mixture (Table I). The anti stereochemistry of the major diastereomers was assigned based on the \(^1\)H NMR coupling constant\(^8\) between the methine protons and also by converting them to the corresponding aziridine on treatment with diisopropyl azodicarboxylate (DIAD) and PPh\(_3\). Accordingly, the one-pot conversion of 1a, by epoxidation and opening protocol with p-bromoaniline, afforded the mixture of the corresponding diastereomer (3c) which was subjected to column chromatography to isolate the anti tripeptide (4) in good yields (Scheme 2). The peptide (4) was smoothly transformed to the corresponding anti aziridine peptide (5) on treatment with DIAD and PPh\(_3\). On the other hand, the corresponding syn diastereomer remained unreactive on treatment with DIAD and PPh\(_3\) under
similar conditions. The aziridine peptide (5) is an useful intermediate as it was transformed, on treatment with catalytic amount of p-toluenesulfonic acid in aqueous THF, to a mixture of the corresponding β-hydroxyphenylalanine containing peptide derivatives from which the major anti diastereomer (6) was isolated by column chromatography. The anti stereochemistry for (6) was assigned based on the large coupling constant ($J = 4.8$ Hz) compared with the corresponding syn diastereomer ($J = 3.5$ Hz).

In conclusion, the polyaniline-supported cobalt(II)salen-catalyzed one-pot parallel synthesis of β-phenylisoserine-(L)-leucine-(L)-proline-derived peptides is an useful protocol for access to structural analogues of aminopeptidase inhibitor bestatin and probestin.

Acknowledgement

We thank the Department of Science and Technology, New Delhi, for financial support.

References and notes

For a recent synthesis of Bestatin see:
5. For the epoxidation using this catalyst see

6. Amides 1 were prepared in high yields (~80%) from N-cinnamoyl luecine according to the following procedure:

```
Ph
\[\begin{array}{c}
\text{Ph} \\
\text{N} \\
\text{O} \\
\text{CO}_{2}\text{Me}
\end{array}\] \\
\text{I) MeOCOC}_{2}F_{3}N \\
\text{II) X} \\
\text{III) AcO / DMAP / Pyridine (for X = OH)}
```

7. General procedure for the synthesis of tripeptide derivatives (3): Amides 1 (5 mmol), 2-methylpropanal (15 mmol) and cobalt(II) salen-polyaniline (~10 mg) were stirred in acetonitrile (20 ml) at ambient temperature for 15–16 h under dioxygen balloon. The balloon was removed and following the addition of aniline derivatives (6 mmol), the stirring was continued for further 17–18 h. The catalyst was filtered and the acetonitrile was removed under vacuum. The residue was successively washed with hexane–CCl₄ (3:1) to afford the peptide derivatives (3) as amorphous solids in high purity (80–90%) (HPLC). Further purification of 3 was achieved by crystallization from ethyl acetate–hexane.

8. Spectral data for some compounds: 4: ¹H NMR (CDCl₃, 400 MHz) δ 7.35–7.29 (m, 3H), 7.28–7.21 (m, 2H), 7.13 (d, J = 8.4 Hz, 2H), 6.97 (m, 1H), 6.47 (d, J = 8.4 Hz, 2H), 4.85 (dd, J = 11.4 and 3 Hz, 1H), 4.76 (dd, J = 14.4 and 4.5 Hz, 1H), 4.50–4.47 (m, 1H), 4.39 (dd, J = 8.4 and 3 Hz, 1H), 3.78–3.71 (m, 1H), 3.69 (s, 3H), 3.51–3.49 (m, 1H), 2.22–2.14 (m, 1H), 2.09–1.92 (m, 1H), 1.53–1.47 (m, 1H), 1.45–1.43 (m, 1H), 1.23 (dd, J = 21, 14.1 and 7.2 Hz, 1H), 0.93 (d, J = 6 Hz, 3H), 0.886 (dd, J = 6 and 3 Hz, 3H) Mass: (m/z) 560 (M⁺), 299, 261, 128, 211. 5: ¹H NMR (CDCl₃, 400 MHz) δ 7.29–7.19 (m, 7H), 7.12–7.07 (m, 1H), 6.66 (d, J = 8.8 Hz, 1H), 6.61 (d, J = 8.8 Hz, 1H), 4.93 (dd, J = 21.2, 2.4 and 5.2 Hz, 0.5H), 4.82 (dd, J = 19.2, 10.4 and 5.2 Hz, 0.5H), 4.51 (dd, J = 8.8 and 2.4 Hz, 0.5H), 3.76 (s, 3H), 3.74 (d, J = 2.2 Hz, 1H), 3.62–3.50 (m, 2H), 3.28 (d, J = 2.8 Hz, 1H), 2.06–1.97 (m, 3H), 1.56–1.53 (m, 1H), 1.30–1.15 (m, 3H), 0.97 (dd, J = 10.6 and 3 Hz, 1H), 0.90 (t, J = 6 Hz, 3H), 6: ¹HNMR (CDCl₃, 400 MHz) δ 7.35–7.32 (m, 4H), 7.30–7.23 (m, 1H), 7.19 (d, J = 8.8 Hz, 2H), 7.08 (d, J = 8.8 Hz, 1H), 6.40 (d, J = 8.8 Hz, 2H), 5.01 (t, J = 4.8 Hz, 1H), 4.80 (dt, J = 8.8 and 5.2 Hz, 1H), 4.47 (dd, J = 8.8 and 4.4 Hz, 1H), 4.30 (d, J = 5.6 Hz, 1H), 3.97 (t, J = 6 Hz, 1H), 3.80 (m, 1H), 3.70 (s, 3H), 3.54–3.44 (m, 1H), 2.22–2.13 (m, 1H), 2.11–1.91 (m, 3H), 1.75 bs, 1H), 1.50–1.38 (m, 1H), 1.35 (m, 2H), 0.88 (d, J = 5.6 Hz, 3H), 0.79 (dd, J = 6 and 3.6 Hz, 3H); Mass: (m/z) 560 (M⁺), 501, 453, 297, 107.