Additive Compounds of s'-Trinitrobenzene with Heterocyclic Compounds Containing Nitrogen in the Ring.

Sosale Garalapury Sastry.

In various communications on the subject Sudborough and his co-workers have shown that various aromatic amines, phenols, phenolic ethers, and some heterocyclic compounds containing nitrogen in the ring, form additive compounds with s'-trinitrobenzene and some other aromatic polynitro-compounds (J. O. S. Trans., 1899, 75, 588; 1901, 70, 522; 1903, 83, 1334; 1906, 89, 683; 1910, 97, 773; 1911, 99, 209; This Journal Vol. I, pp. 149 and 159; see also Hepp, Annalen, 1882, 215, 344; Sommerhoff, Dissertation Zurich, 1904; Noelting and Sommerhoff, Ber., 1906, 39, 76). These compounds are relatively stable, crystalline substances, which can easily be alkylated, acetylated, and benzoylated. The influence, on the formation of the additive compounds, of introducing various alkyl, aryl, and negative groups into the ring has also been studied. The formation of the additive compound is to be provisionally attributed to the tendency of nitrogen and other multivalent atoms (as in phenols and thiophenols) to pass into a higher and saturated state of valency. Of the various formulæ that suggest themselves, the most probable one, according to Sudborough, is to be represented in conformity with the following scheme:

\[
\begin{align*}
\text{NH}_2 \quad \text{C}_6\text{H}_5 \quad \text{NO}_2 \\
\end{align*}
\]

In the case of heterocyclic compounds and also some others, the formation of colourless or very pale-coloured compounds with s'-trinitrobenzene seems to be in some manner due to the linking between carbon and nitrogen. The important point that was in view in the present investigation was whether in an additive compound of trinitrobenzene with an aromatic amine the
presence of the linking N:C always produced a nearly complete removal of colour, as had been shown in the following pairs of compounds:

\[
\text{C}_6\text{H}_6\cdot \text{CH}_2\cdot \text{NH}:\text{C}_6\text{H}_5 \quad \text{and} \quad \text{C}_6\text{H}_5\cdot \text{CH}::\text{N}:\text{C}_6\text{H}_5.
\]

Benzylaniline.
Benzylideneaniline.

\[
\begin{align*}
\text{C}_6\text{H}_6\cdot \text{CH}_2\cdot \text{NH} & \\
\text{OH} & \\
\text{CH}_2 & \\
\text{NH} &
\end{align*}
\]

Tetrahydroquinoline
Quinoline

In the above pairs the substances on the left gave highly coloured additive compounds, but those on the right nearly colourless ones. In the present work this has been confirmed, the linking \(\cdot \text{CH}_2\cdot \text{NH}\) always producing compounds which are almost black.

Two other interesting additive compounds are those from phenazine and from azoxyanisole. Both have two nitrogen atoms directly linked with each other, and both the additive compounds are deep yellow.

Experimental.

Tetrahydro-o-toluquinoline-s-trinitrobenzene,
\[
\text{C}_{16}\text{H}_{13}\text{N},\text{C}_6\text{H}_5(\text{NO}_2)_3.
\]

This crystallises from alcohol in brownish-black needles melting at 113°. The pure additive compound can be obtained only in the presence of excess of the base:

\[
\begin{align*}
0.1549 & \text{ gave } 28.8 \text{ c.c. } \text{N}_2 \text{ at } 22° \text{ and } 690 \text{ mm. } N=15.77. \\
\text{C}_6\text{H}_5\text{O}_3\text{N}_4 & \text{ requires } N=15.56 \text{ per cent.}
\end{align*}
\]

Tetrahydro-p-toluquinoline-s-trinitrobenzene,
\[
\text{C}_{16}\text{H}_{13}\text{N},\text{C}_6\text{H}_3(\text{NO}_2)_3.
\]

This crystallises from alcohol in dark plates melting at 102°:

\[
\begin{align*}
0.3132 & \text{ gave } 0.1880 \text{ C}_6\text{H}_2\text{O}_3\text{N}_3, \text{ on being treated with dilute hydrochloric acid (compare Sudborough and Beard, J. C. S. Trans., 1910, 97, 795). } \text{C}_6\text{H}_3\text{O}_3\text{N}_2=58.43. \\
\text{C}_{16}\text{H}_{15}\text{O}_3\text{N}_4 & \text{ requires } \text{C}_6\text{H}_2\text{O}_3\text{N}_3=59.16 \text{ per cent.}
\end{align*}
\]
Tetrahydro- \(\alpha \)-naphthaquinoline-s-trinitrobenzene,
\[
C_{19}H_{13}N_{2}C_{8}H_{3}(NO_{2})_{3},
\]
\(\alpha \)-Naphthaquinoline was reduced with tin and hydrochloric acid (\(\text{Ber.}, 1891, 24, 2643 \)). The additive compound crystallises from alcohol in dark needles melting at 129—130°:

0.2534 gave 34.50 c.c. \(N_{2} \) at 22.5° and 692 mm. \(N=13.97 \).

\[
C_{19}H_{13}O_{4}N_{4}, \text{requires} \ N=14.15 \text{per cent.}
\]

\(\alpha \)-Naphthaquinoline-s-trinitrobenzene forms yellow needles melting at 133-3.5° (\(\text{J. C. S., Trans.}, 1910, 97, 778 \)).

Tetrahydro- \(\beta \)-naphthaquinoline-s-trinitrobenzene.
\[
C_{19}H_{13}N_{2}C_{8}H_{3}(NO_{2})_{3},
\]
\(\beta \)-Naphthaquinoline was reduced by means of tin and hydrochloric acid (\(\text{Ber.}, 1891, 24, 2643 \)). The additive compound crystallises from alcohol in black needles melting at 138—139°:

0.2262 gave 31.7 c.c. \(N_{2} \) at 23° and 689 mm. \(N=14.26 \).

\[
C_{19}H_{13}O_{4}N_{4}, \text{requires} \ N=14.15 \text{per cent.}
\]

\(\beta \)-Naphthaquinoline-s-trinitrobenzene forms pale buff-coloured needles melting at 112° (\(\text{J. C. S., Trans.}, 1910, 97, 778 \)).

Three grams of methylacridine (m. p. 114°) were dissolved in 150 c.c. of alcohol in a flask provided with a reflux condenser. The solution was heated to boiling, and 120 grams of sodium amalgam were added gradually through the condenser tube during about an hour and a half. The contents of the flask were kept boiling for about two hours more. After cooling, any unchanged amalgam and the mercury were separated from the alcoholic solution, which was afterwards acidified with moderately concentrated hydrochloric acid and then filtered. The residue on being crystallised from alcohol melted at 125—126°.

This dihydro-compound was converted into its acetyl derivative by heating it with acetic anhydride and pouring the product into water. The acetyl derivative, when crystallised from
ethyl acetate, melted at 162°. On recrystallisation there was no alteration in the melting point:

0.3347 gave 21.4 c.c. N₂ at 27° and 685 mm. N = 6.30.

C₁₆H₁₅ON requires N = 6.27 per cent.

5 : 10-

C₁₄H₁₃N₁C₆H₃(NO₂)₃.

This crystallises from alcohol in black needles melting at 117—118°:

0.2560 gave 33.9 c.c. N₂ at 23.5° and 688 mm. N = 13.58.

C₉₀H₄₆OₐN₄ requires N = 13.73 per cent.

1 : 3 : 5 — Trianilinobenzene-s-trinitrobenzene,

C₆H₉(NH·C₆H₅)₃C₆H₃(NO₂)₃.

Trianilinobenzene was prepared from aniline and phloroglucinol (Minunni, Gazzetta, 1890, 20, 337). The additive compound crystallises from a mixture of alcohol and ethyl acetate in black needles and from chloroform in prisms. In either case the product melts at 160°:

0.2140 gave 31.7 c.c. N₂ at 27° and 688 mm. N = 14.91.

C₃₀H₂₄O₆N₆ requires N = 14.89 per cent.

Phenazine was prepared from aniline and nitrobenzene by heating them together with powdered sodium hydroxide (Ber., 1901, 34, 2447). The additive compound crystallises from alcohol in yellow needles melting at 151—153°:

0.2814 gave 36.8 c.c. N₂ at 25° and 689 mm. N = 17.80.

C₁₈H₁₁O₆N₃ requires N = 17.82 per cent.

Azoxyanisole-s-trinitrobenzene, C₁₄H₁₄O₃N₂C₆H₃(NO₂)₃.

This crystallises from alcohol in golden-yellow plates melting at 92—93°:

0.3050 gave 49.4 c.c. N₂ at 25.5° and 688 mm. N = 16.44.

C₉₀H₁₇O₉N₆ requires N = 16.37 per cent.
The benzylidene derivative was prepared by heating together molecular proportions of benzaldehyde and 1-phenyl-3-methyl-5-pyrazolone, and crystallising the crude product (a red mass) from alcohol, from which it separates in red needles melting at 106—107°.

The additive compound with s-trinitrobenzene,
\[C_{17}H_{14}ON_2, C_6H_5(NO_2)_3, \]
forms scarlet plates melting at 113—114°.

0.1430 gave 22.2 c.c. \(N_2 \) at 31° and 678.5 mm \(N=14.92 \).

\[C_{26}H_{17}O_7N_5 \] requires \(N=14.73 \) per cent.

With s-trinitrobenzene, dihydrophenylacridine gives a black additive compound and s-diphenylcarbazide gives orange needles. Tetra-quinolinolene gives only a resin.

I desire to thank Prof. J. J. Sudborough, under whose direction the present work was done, for all his kindnesses during the progress of the work.

DEPARTMENT OF GENERAL AND ORGANIC CHEMISTRY,
INDIAN INSTITUTE OF SCIENCE,
BANGALORE.